Fundamental Physics in the Framework of DLR's Research and Technology Programme

Hansjörg Dittus German Aerospace Center (DLR)

Precision of GR-proofs by space experiments

Lunar Laser Ranging

- since 1969 (Apollo 11, 14, 15 and Luna 17, 21) Laser-Ranging with retro-refelctors on Moon surface
- Light pulses of about 200 ps with repetition rates of 0.1 s
- Beam "illuminates" a circle of Ø 20 km on Moon surface
- Out of 10²⁰ photons 1one coming back can be identified on Earth (ca. 1 per second)
- Accuracy: 3 cm
- Telescopes:: McDonald Obs., Fort Davis TX, Mt. Haleakala, Hawaii and OCA, Grasse

Cassini-Exp. / Shapiro Time Delay

Einstein-Infeld-Hoffmann equation

- Numerical models based on isotropic PPN n-body metric metric
- Planets and asteroids treated as point masses
- Accelerations calculated wrt their barycentric position

$$\begin{split} \ddot{\vec{r}_{i}} &= \sum_{j \neq i} \frac{Gm_{j} \left(\vec{r}_{j} - \vec{r}_{i}\right)^{3}}{\left|\vec{r}_{j} - \vec{r}_{i}\right|^{3}} \\ & \cdot \left[1 - \frac{2(\beta + \gamma)}{c^{2}} \sum_{k \neq i} \frac{Gm_{j}}{\left|\vec{r}_{i} - \vec{r}_{k}\right|} - \frac{2\beta - 1}{c^{2}} \sum_{k \neq j} \frac{Gm_{j}}{\left|\vec{r}_{j} - \vec{r}_{k}\right|} + \gamma \frac{\left|\vec{\dot{r}_{i}}\right|^{2}}{c^{2}} + (1 + \gamma) \frac{\left|\vec{\dot{r}_{j}}\right|^{2}}{c^{2}} - \frac{2 + 2\gamma}{c^{2}} \dot{\vec{r}_{i}} \cdot \vec{r}_{j} - \frac{3}{2c^{2}} \left(\frac{\left(\vec{r}_{i} - \vec{r}_{j}\right) \cdot \vec{r}_{j}}{\left|\vec{r}_{j} - \vec{r}_{i}\right|}\right)^{2} + \frac{1}{c^{2}} \left(\vec{r}_{j} - \vec{r}_{i}\right) \cdot \vec{r}_{j} \\ & + \frac{1}{c^{2}} \sum_{j \neq i} \frac{Gm_{j}}{\left|\vec{r}_{j} - \vec{r}_{i}\right|^{3}} \left(\left(\vec{r}_{j} - \vec{r}_{i}\right) \cdot \left((2 + 2\gamma)\dot{\vec{r}_{i}} - (1 + 2\gamma)\dot{\vec{r}_{j}}\right)\right) + \frac{3 + 4\gamma}{2c^{2}} \sum_{j \neq i} \frac{Gm_{j}}{\left|\vec{r}_{j} - \vec{r}_{i}\right|^{3}} \end{split}$$

Time delay for curved space-time due to grav. fields of Sun and Earth

$$\Delta t = \frac{\left|\vec{r}_{t}^{C} - \vec{r}_{s}^{C}\right|}{c} + \frac{(1+\gamma)Gm_{s}}{c^{3}} \ln\left(\frac{\mathbf{r}_{s}^{S} + \mathbf{r}_{t}^{S} + \left|\vec{r}_{t}^{S} - \vec{r}_{s}^{S}\right| + (1+\gamma)Gm_{s}/c^{2}}{\mathbf{r}_{s}^{S} + \mathbf{r}_{t}^{S} - \left|\vec{r}_{t}^{S} - \vec{r}_{s}^{S}\right| + (1+\gamma)Gm_{s}/c^{2}}\right) + \frac{(1+\gamma)Gm_{E}}{c^{3}} \ln\left(\frac{\mathbf{r}_{s}^{E} + \mathbf{r}_{t}^{E} + \left|\vec{r}_{t}^{E} - \vec{r}_{s}^{E}\right|}{\mathbf{r}_{s}^{E} + \mathbf{r}_{t}^{E} - \left|\vec{r}_{t}^{E} - \vec{r}_{s}^{E}\right|}\right)$$
Cassini Conjunction Experiment 2002:
$$\begin{array}{c} \text{Satellit - Earth distance > 10^{9} km} \\ \text{Ranging: } X \sim 7.14 \text{GHz \& Ka \sim 34.1 \text{GHz (dual band)} \\ \text{Result: } M = 1 + (2.1 \pm 2.3) M = 10^{M} \end{array}$$

The Planet System KOI-351, detected in 2013

- 2500 light years far distant from sun
- main row star in the Milky Way
- 7 planets on a distance of only 1 AU
- detected with Kepler S/C
 by transition method
 between 2008 and 2013

How stable is the system?

The Transition Method

Venus transition at sun on 6.6.2012

PLATO S/C

Galileo S/C: A chance for Fundamental Physics?

- 2 L3 FOC satellites launched on 22/08/2014

in:

Elliptical orbit with deviation from nominal orbit of -9.500km up to +2.700km

Eccentricity 0.23

Speed Apogee ~3km/s and Perigee ~5km/

S

Delta Inclination of 6 degrees with respect to nominal plane

Orbit has been changed because Earth sensors are not reliable for these altitudes -> gyros might become mandatory input for AOCS (gyro spec to be checked)

Yaw steering (clocks never pointing to the sun) coincidence at Perigee could exceed the tolerance

A DLR

DLR

What could be done with 2 GNNS satellites which failed their orbit?

- Clock stabiliy: 10⁻¹⁵ per orbit
- Grav. Redshift test improvement: 10²
- Perihelion shift: 10¹
- Alternative theory tests
 Yukawa potential at length scale 104 m: 10⁵

New Target Orbit for GSat 201

Orbit insertion: 5.11.2014

Perigee (km)	13,728.7	to	17,340.8
Apogee (km)	25,922.1	to	25,858.8
Height diff. (km) 12,193.4		to	8,518.0
Excentricity	0.2326	to	0.1522

Observation Tools

- Satellites and orbital platforms
 - Observations from Satellites (e.g. astronomical and astrophysical telescopes)
 - Experiments with Satellites (e.g. spacecraft tracking by Doppler shift)
 - Experiments on Satellites (e.g. GP-B)
- · Needs a toolbox of hihgly precise sensors to measure
 - Distance (e.g. Laser Ranging, Doppler shift, optical transponders)
 - Time (e.g.cavity clocks / frequency standards, atomic / optical clocks, freq. combs)
 - Acceleration (SQUID-based sensing, gyroscopes, inertial sensors)
 - Angles (pointing, star sensors, VLBI)
- Needs reliable and precisely operating actuators
 - Thrusters
 - Reaction wheels
 - Piezo-techniques for mirror pointing

Drag-free Thrust Control

- mN/µN-Thrusters:
 - for compensation of forces deviating the satellite on its ideal free fall orbit (qeodesic)
 - for compensating of tidal forces and satellite dynamics in formation flight
- Disturbance forces
 - atmospheric drag: forces: ca. 1mN; moments: 10 μ N · m
 - radiation pressure by Earth albedo: forces: ca. 10 μ N; moments: 1 μ N \cdot m
 - magnetic moments by s/c interaction with the Earth magnetic field (typically):

moments: 100 μ N · m, after moment compensation: 10 μ N · m

- solarer radiation pressure: forces: ca. 10 μ N, moments: 0.1 μ N \cdot m
- Thrust requirements

 - thrust co0ntrol: ΔS < ± 0.1 μN
 residual acceleration: < 10⁻¹⁵ m/(s²· Hz^{0.5})
 - permanent operation

Gas-proportional thruster on Gravity Probe B

 Set of 4x4 =16 proportional thrusters, fuel: He (boil-off gas from 2.3 m³ Dewar) at 670 to 2,330 Pa
 S < 10 mN for 6 DOF
 I_{sp} = 130 s mass flux: 6.5 mg / s noise: 25 µN·Hz^{-0,5}

Sourc:e: Stanford University

• Drag-free performance of GP-B

F. Everitt et al.

Satellite Thrusters

- Huge dynamic range
 - ~ μN < S < 40 kN; 200 s < I_{sp}< 3,000 s
- Extremely low thrust systems
 - Arcjet Engines: Hybrid systems for continous or pulsed thrust light arc ignition of gases 100 mN < S < 1N; 500 s < I_{sp}< 2,000 s
 - Ion-thrusters (Hall thruster): non -chemical systems for continous thrust over long time ionisingerung of a Xenon atom beam 2 kW< P < 50 kW 40 mN < S < 7200 mN; 3,000 s < I_{sp}< 9,000 s
 - Magneto-plasma dynamical thrusters: beam acceleration by EM-fields S up to 100 N; I_{sp}≈ 5,000 s
 - Cold gas thruster: inert gas (typically N₂) exhaust 1mN < S < 10 N; 50 s < I_{sp}< 80
- Micropropulsion systems:
 - Typically Fundamental Science Mission (e.g. LISA) need μN thrust w sub μN precision control

Micropropulsion Systems

MEMS-based propulsion

- Main incitement and motivation: development of thrust systems for nanosatellites
- Microfabricated: Liquid Micro-Thruster, Micro-Ion Engine,... Ele Requirements: Thrust level 1–1000 N

Impulse bit 1–1000 N Specific impulse 160 s Mass <0.1 kg Power consumption <1 W Volume <1 cm³ Operating temperature <1700 K

Laser induced ablative thrusters

- S. Karg, DLR-TP
- New concept for low thrust propulsion

Micropropulsion Systems

19

Optical links and Laser ranging

- Optical transponders (on-board lasers, telescopes, timing receiver)
- Demonstrated over 0.17 AU (24 million km) with Messenge S/C and Mars Global Surveyor S/C (1-way, 80 million km)
- Nd:YAG laser, pulse rate 8 Hz
- Needs atmospheric correction: calibration can be done by ranging to near earth objects (e.g. LAGEOS) from different stations

	Messenger S/C	MOLA on Mars Global Surveyor S/C (1-way only)
range	2.4·10 ⁷ km	8·10 ⁷ km
pulse width	10 ns (up), 6 ns (down)	5 ns
pulse energy	16 mJ (up), 20 mJ (down)	150 mJ
repetition rate	240 Hz (up), 8 Hz (down)	56 Hz
laser power	3.84 W (up), 0.16 W (down)	8.4 W
beam divergence	60 μrad (up), 100 μrad (down)	50 µrad
receive area	0.042 m²(up), 1.003 m² (down)	0.196 m ²

Echo transponder for e.g. lunar laser ranging Time delay must be known

Asynchronous transponder for satellite laser ranging Repetition rate must be known

John J. Degnan, in Lasers, Clocks, and Drag Free

GRACE

(Gravity Recovery And Climate Experiment)

- Joint NASA/German Aerospace Center mission
- Aims to continuously measure Earth's gravity field
- Pair of S/C around Earth, 220km distance along orbit
- The distance between the S/C varies depending on the Earth mass distribution
- Distance measurement by a two-way microwave-ranging link (accuracy in the µm range)
- Polar Orbit 500km above Earth
- Input to
 - Oceanography
 - Hydrology
 - Glaciology
 - Geology
 - Climate change analysis
- End of lifetime: expected 2015 2016
- Follow on mission GRACE-FO will start in 2017 in order to guarantee a continuous flow of data

www.DLR.de ' Chart 22

GRACE – Follow On

- Start: August 2017
- The basic principles of the GRACE mission do not change
- Additional second distance measurement system LRI
- LRI Laser Ranging Instrument

GAIA

Global Astrometric Interferometer for Astrophysics

- Launch: Dec 19, 2013
- Orbit: Lissajous-type orbit around L2
- Most precise 3D map of the Milky Way and its dynamic based on paralaxe determination, distance, and velocity measurements
- Determination of brightness, temperature
 and composition
- 2 identical telescopes and imaging systems, BP/RP (Blue and Red Photometers) and RVS (Radial-Velocity Spectrometer)
- Angle measurement: 24 marcs (50 times better than Hipparcos)
- Distance measurements: up to 30,000 ly; with accuracies between 10⁻⁵ and 0,2

Clocks to explore space-time

- Redundant measurements
 - Measuring acceleration of S/C on geodesic via ranging and Doppler tracking
 - Measuring redshift of clocks on-board S/C

for example Pioneer Anomaly

$$\frac{\Delta v}{v} = \frac{1}{c^2} \int_{20AU}^{90AU} a_{PA} dx \approx 10^{-13}$$

- Clock exploration does not depend on geodesic motion, independent from acceleration
- Cock exploration is cumulative
- · Clocks automatically isolate the pure gravity sector
- Clocks represent an absolute DC-accelerometer

The Future

STAR / BOOST ?

Source: STAR / BOOST collaboration

DLR

GPS Antenna

Bus Area

S-Band Antenna

Kennedy-Thorndike experiment - Frequency comparison: BOOST (BOOst Symmetry Test)

Source: C. Braxmaier

Kennedy-Thorndike experiment - Frequency comparison: BOOST (BOOst Symmetry Test)

Source: C. Braxmaier

BOOST (BOOst Symmetry Test): Kennedy-Thorndike

- Testing the foundations of Special Relativity (Lorentz Boost Invariance)
 - "Is the speed of light independent of the velocity of the Laboratory frame"
- High velocity changes (direction) on short time scales necessary
 - → Satellite experiment: Comparison of optical cavity and iodine clock

Modulation of v - Laboratory @ satellite

Velocity of an experiment on satellite

 $\vec{v} = \vec{v}_{\rm Sol} + \vec{v}_{\rm E} + \vec{v}_{\rm Sat}$

Gain on velocity ratio

$$\frac{v_{\rm Sat}}{v_L} = \frac{7.4 \, {\rm km/s}}{0.3 \, {\rm km/s}} = 25$$

Estimation of KT-coefficient

BOOST (BOOst Symmetry Test): Technology Reqmts

→ Payload design in DLR compact satellite bus feasible!

Status: Iodine standard

- Compact setup: 25cm x 55cm x 10cm
- 30cm long iodine cell in triple pass configuration
- Use of specific AI technology
- MTS @ 532nm
- Modulation either using fiber-EOM or AOM
- < 3 x 10⁻¹⁵ @ 1000s

- > MTS @ 508 nm \rightarrow 1/10 of line width compared to 532 nm
- Expected performance for clock instability:
 < 1 x 10⁻¹⁶ @ 2700 s

Cavities

- Made from ULE or FS or Zerodur
- 1064nm JPL GRACE FO cavity
 - 5*10⁻¹⁴ @ 1000s
 - TRL 5
- 1064nm SODERN Cavity
 - 10⁻¹⁵ @ 100s
 - TRL4-5

Source: C. Braxmaier

But that's not all:

Quantum sensors

Based on:

- (1) Ultra-precise optical metrology $\delta v/v < 10^{-17}$ in the optical frequency domain
- (2) Phase-sensitive atom interferometry $\delta E/E < 10^{-19}$

due to the sub-microscopic quantum mechanical structure

Atom Interferometer

Atom Interferometers in Space

 Highest sensitivity of atom interferometers can be obtained under conditions of weightlessness

- Interrogation time T can be maximized (> 10 s)
- Sensitivity (δφ) is proportional to T² or T³
 (For comparison: δv of atomic fountain clocks scales with T only.)
- Compensation of gravity allows to reduce atom temperature
- Reduces atom velocity (< 10 cm/s)</p>
- Ultra-cold temperatures enable large atomic ensemble sizes (> 1 cm)
- Further improvement by using degenerated quantum gases (BECs) as sources

- Reduction of disturbances of different noise sources
- Dominant sources like seismicity and accustic noise can be nearly completely depressed under weightlessness

STE-QUEST (SpaceTime Explorer – Quantum Equivalence Space Test)

• Testing the foundations of General Relativity and measuring

