

MICROSCOPE – Testing the weak Equivalence Principle in Space

P. Touboul on behalf of the MICROSCOPE team

Observatoire de la Côte d'Azur

Physikalisch-Technische **Bundesanstalt**

S

Team in Onera:

Y. Alonso, D. Boulanger, R. Blum, R. Chhun, Y. Durand, B. Foulon, E. Hardy, P.D. Maigret, P. Flinoise, C. Gageant, P. Kayser, V. Lebat, P. Leseur, J. Bergé, PA Huynh, F. Liorzou, M. Pernice, E. Perrot, M. Rodrigues, A. Rebray, N. Tanguy, P. Touboul Team in CNRS-OCA, Gilles Métris, L. Serron et al. Team in PTB, Franck Löffler, D. Hagedorn et al. Team in ZARM, Claus Lammerzahl, Hanns Selig et al. Team in DLR, Hansjoerg Dittus et al. Team in Cnes, Sylvie Léon Hirtz, Y. André, Alain Robert et al.

o v a

n

"The ratio of the masses of two bodies is defined in two ways which differ from each other fundamentally, ..., as the reciprocal ratio of the accelerations which the same motive force imparts to them (inert mass),..., as the ratio of the forces which act upon them in the same gravitational field (gravitational mass). ...The equality of these two masses, so differently defined, is a fact which is confirmed by experiments..." Einstein, The Meaning of Relativity, 1921.

2

The Equivalence Principle

Best present EP tests

Laser Ranging

- laser impulse 100ps (10²⁰ emitted photons)
- 1 photon detected back
- for every 100 pulses
- EP Test from 20 years' ranging

Phys.Rev. D 53, 6730 (1996).

(Apache Point Observatory Lunar Laser-ranging Operation)

APOLLO : Lunar laser Tracking Millimeter range precision, **APOLLO will in particular test:**

- first, the Strong Equivalence Principle (SEP) to 10⁻⁵
- de Sitter relativistic precession to a few parts in 10⁴
- the time variation of the gravitational constant G to 1 / 10¹³ per year.

arXiv:0710.0890v2 [astro-ph] 8 Nov 2007, T.W. Murphy, Jr., E.G. Adelberger, et al.

Earth's Horizontal gravity In Seatle 1.68cm s⁻²

 $aW(Be) - aW(AI) = (+0.7 \pm 2.5) \times 10^{-15} \text{ m/s}^2$ $\rightarrow \eta$ (Be,Al) = (-1.5 ± 1.5) × 10⁻¹³ in 96 days of data

Eötwash group (2012)

The principle of the MICROSCOPE space mission

Galilée (1590)

- Gravitational source: the Earth
- inertial acceleration: orbital motion
- 2 masses of different composition: controlled on the same orbit (< 10⁻¹¹m) by electrostatic pressures
- \rightarrow Steady configuration, control of the satellite

- Time span of the measurement: non limited by the free fall (> 20 orbits)
- Environment: limited and controlled perturbations, drag-free satellite
- Signal along Earth monopole direction: well defined phase & frequency

The principle of the MICROSCOPE space mission

MICROSCOPE Satellite

2 differential accelerometers in thermal cocoon

2 differential accelerometers in magnetic cocoon

Instrument accomodation : a dedicated passive thermal control

Heliosynchronous orbit : steady external configuration

- **G** 3 locations for the payload units versus thermal requirements
- Fine passive decoupling and well protected radiator from Earth radiations
- Models and dedicated Tests performed in 09-10 confirm :
- ✓ the thermal case fine insulation
- the instrument low sensitivities of mechanical core & Electronics
- the low power consumption and fluctuations

KP Perfo, CDR Propulsion, CDR satellite

THE FRENCH AEROSPACE LAB

The instrument

2 x { 28 cm x 17 cm x 9 cm - 3.5kg - 7W }

30 cm x 25 cm x 11 cm – 5kg – 2 x 11W

2 identic sensor Unit = differential accelerometers
Each with 2 concentric Test-Masses (<u>Pt-Rh/Pt-Rh</u> or <u>Ti/Pt-Rh</u>)
Each mass controlled independently → inertial sensor

2 Low noise Electronics Units : one per couple of masses For each test mass :

Capacitive sensing

Control of Proof-mas with electrode charges Digital interface with computer and then s/c data bus

2 Digital Control Units

- Each Unit embarks :
- 1 (DSP + FPGA) for 2 test-mass control and data conditioning for the On Board Computer
- 2 Power Control Unit (nominal + redundant)
 - converts the sat 28V in very stable secondary voltages (+/-48V, +/-15V,+5V,3.3V)

MICROSCOPE instrument configuration

ONERA THE FRENCH AEROSPACE LAB

Instrument Measurement

For each mass :

- 3 types of electrodes to control all six degrees of freedom
- → 6 servo-loop channels :
- Axial x, position = ring electrodes
- **Rotation about x = 4 pairs of electrodes in regard to the mass flat areas**
- Radial y and z, position and rotation = quadrant electrodes

Integration of the Core is a challenging task accuracy, robustness, repeatability

7 µm gold wire : To maintain a stable

- voltage on test-masses
- To apply a 100kHz voltage for capacitive detection

during ground operations

Electrostatic configuration geometry

Integration of T-SAGE instrument FM : 1 year

200 points of control per sensor Adjustment of the centering of the two masses of the same accelerometer Adjustment of the mass free motion Adjustment of the clamping mechanism

MICROSCOPE

Successful Qualification and Acceptance tests performed in the time frame 2012-2014

Qualification, QM: 2012-2013 vibrations, shocks, thermal cycling

Acceptance, Sensor FM: 2014 vibrations, thermal cycling

Acceptance of Electornics FEEU FM: 2014 vibrations, schocks, thermal vacuum cycling, CEM

Acceptance of Digital Electronics FM: To be done in early 2015 Firsts tests of thermal vacuum cycling with FEEU passed in 2014

ONERA THE FRENCH AEROSPACE LAB

Developement status of SU's

SU'sFM : Sensors

- The sensor core is in accordance with the performance requirements.
- Delivered to CNES on Sept 17th of 2014
- → integration in S/C cocoon

FEEU QFM1 + FM2 : Low noise Electronics U.

- Qualified in July 2014.
- Final performance tests in summer
- Delivered to CNES on 15th October
- \rightarrow integration in S/C cocoon

ICUME QFM : Digital Electronics U.

- Partial thermal tests in July 2014.
- FPGA under final coding
- Qualification and delivery end of March 2015

Catapulte test to validate the qualification or the acceptante (Drop n°61 with QM inZARM)

debut := 2000

 $fin := debut + FRAME \cdot 100$

Slow motion (speed/2)

17 Pierre Touboul, ONERA, Microscope Colloquium III, Palaiseau

FM Drop 05 et 06 : 20th March of 2014

MICROSCOPE

ONERA

THE FRENCH AEROSPACE LAB

Electronics performance

Capacitive sensing :

	Internal Mass	External Mass
X	12 μVHz ^{-1/2} = 0.4 10 ⁻¹⁰ mHz ^{-1/2}	6 μVHz ^{-1/2} = 0.25 10 ⁻¹⁰ mHz ^{-1/2}
Y,Z	6 μVHz ^{-1/2} = 0.25 10 ⁻¹⁰ mHz ^{-1/2}	3 μVHz ^{-1/2} = 0.1 10 ⁻¹⁰ mHz ^{-1/2}

Electrostatic control & measurement :

	Internal Mass	External Mass
X	1.1 μVHz ^{-1/2} = 20 10 ⁻¹⁵ NHz ^{-1/2}	1.6 μVHz ^{-1/2} = 52 10 ⁻¹⁵ NHz ^{-1/2}
Y,Z	2.3 μVHz ^{-1/2} = 160 10 ⁻¹⁵ NHz ^{-1/2}	2.3 µVHz ^{-1/2} = 710 10 ⁻¹⁵ NHz ^{-1/2}

Proof mass charge :

- Vp : 5V ; 0.22 μVHz^{-1/2}; 13 ppm/°C
- + stability compatible with 5mK fluctuations

Power supply :

• 0,1 mV for 1 V satellite power bus variation & 2mV/°C

Disturbing source of the instrument

ONERA

THE FRENCH AEROSPACE LAB

	Ev · Y SCI / S		
Radial electrode dissymmetries due to machining			
Front wall along X: due to defect of symmetry of the a	xial electrodes		Bias
Front wall along X: Conicité de la PM vis-à-vis des su	rfaces en bout		
Cylindricity defect of the silica external cylinder wrt cyl	indrical PM /m\		
Cylindricity defect of the PM wrt silica external cylinde	r c/ \c		
Cylindricity defect of the silica internal cylinder wrt cyli	ndrical PM m/ \m		
Cylindricity defect of the PM wrt silica internal cylinder	/c\		
Lever arm error: Centring of X electrodes wrt YZ electrodes	trodes (for θψ)		Gold wire stiffness
Lever arm error: Axial capacitive sensor bias (for $\theta \psi$)			
Lever arm error: PM conicity (for $\theta \psi$)			
Lever arm error: Electrode cylinder conicity (for $\theta \psi$)			
YZ bias error: DAC+DVA distribution over 4 electrode	s (for θψ)		
YZ bias error: CPD (for $\theta \psi$)			Noise-bias fluctuations
YZ bias error: Radial electrode dissymmetries (for $\theta \psi$) all in 0		
Concentricity of the two cages			
Detection: Capacitive sensor + ADC, electronic noise			
Detection: Capacitive sensor + ADC, position noise			
Read-Out			Gold wire damping
Actuation: DAC+DVA		\mathbf{X}	Cold mild damping
CPD			
Wire stiffness/torsion constant			
Wire damping			
Gas damping			
TOTAL (quadratic sum)			electronics thermal sensitivity: bias
electronics thermal sensitivi	ty: gain	·	
Read-Out			Read-Out

FM instrument noise: axial (X SCI)

Similar to GOCE noise performance, at least demonstrated by a factor 2 in orbit Interest in lower frequency and longer integrating period but smaller bandwidth

EP test expected accuracy : with FM SU-EP validated characteristics

Inertial pointing : one session of 120 orbits

	noise (m/s²/Hz	2^1/2) in $2\Gamma_{mesd}$	tone @fep (m/s²) in $2\Gamma_{mesd}$		
TOTAL (direct sum)/3			7,58E-15	135,3%	
TOTAL (quadratic sum)	6,64E-12	140,4%			
SPEC	4,73E-12		5,60	E-15	
			ΔEP	1,38E-15	

rotating pointing : one session of 120 orbits

	noise (m/s²/Hz	$2^{1/2}$ in $2\Gamma_{mesd}$	tone @fep (m/s ²) in $2\Gamma_{mesd}$		
TOTAL (direct sum)/3	3,05E-15 54,5%			54,5%	
TOTAL (quadratic sum)	2,73E-12	57,6%			
SPEC	4,73E-12		5,60	E-15	
			ΔEP	5,61E-16	

1,19 10⁻¹⁵

Over 240 orbits

Measurement principle

1 masse = 1 senseur inertiel = 6 mesures AOCS + 1 mesure scientif.

$$m_I \ddot{\mathsf{X}} = F_{el} + F_{pa} + m_G g \qquad \Rightarrow \qquad F_{el} / m_I = (\ddot{\mathsf{X}}_{inst} + \ddot{\mathsf{X}}_{cap}) - F_{pa} / m_I - (m_G / m_I)g$$

$$\frac{m_{Gk}}{m_{Ik}} = 1 + \delta_k \qquad \qquad \overrightarrow{\Gamma_{App,k}} = \frac{\vec{F}el_k}{m_{Ik}} = \frac{M_{Gsat}}{M_{Isat}}\vec{g}(O_{sat}) - (1 + \delta_k)\vec{g}(O_k) + R_{In,COR}\left(\overrightarrow{O_{sat}O_k}\right) - \frac{\vec{F}pa_k}{m_{Ik}} + \frac{\vec{F}ext}{M_{Isat}} + \frac{\vec{F}th}{M_{Isat}}$$

What do we measure ? Earth's, satellite, instrument, physics contributions

Stochastic and Tone Signals to be considered with a limited observation period and some lacks of data

- → Detailed Specifications for S/C Sub-Systems, Instrument Environment & Instrument Performances
- \rightarrow Accurate in orbit calibration
- \rightarrow A posteriori estimation and corrections

Calibrations

- 1. $K_{1cx}\Delta_x$ and $K_{1cx}\Delta_z$: use the important value of T_{xx} and T_{xz} at $2f_{orb}$
- 2. $K_{1cx}\Delta_y$: T_{xy} too weak \rightarrow oscillate the satellite around Y_{sat}
- 3. Parameters of the common sensitivity matrix ($\eta_{cz} + \theta_{cz}, \eta_{cy} \theta_{cy}$): oscillation of the test masses along Y and Z at f_{TM} + modulation of the Earth gravity gradient at $2f_{orb} \rightarrow$ calibration signal at f_{TM} + $2f_{orb}$
- 4. Parameters of the differential sensitivity matrix (K_{1dx} , $\eta_{dz} + \theta_{dz}$, $\eta_{dy} \theta_{dy}$): oscillation of the satellite along X, Y or Z through the drag-free command C
- 5. Differential quadratic factor K_{2dxx} : oscillation of the satellite along X through the drag-free command $C \rightarrow$ calibration signal at $2f_{cal/lin}$
- 6. Common quadratic factor K_{2cxx}:
 - K2ixx: oscillation of the test mass i along X, drag-free locked on the sensor $j \rightarrow$ calibration signal at 2f_{TM}; same with j and i

THE FRENCH AEROSPACE LAB

25

MICROSCOPE **MICROSCOPE Major mission specifications** Instrument/Satellite dynamics hias non lin $\Gamma_1 - \Gamma_2 \approx \eta_{EP} g$ $|\Omega \wedge (\Omega \wedge \Delta x) + \dot{\Omega} \wedge \Delta x| +$ Δx noise ∂x EP violatio Attitude signal motion control TM Alignment matching mis-alignmen dvnamics gravity gradient Earth's gravity ⊗ Drag Free Control wrt SST frame disturbing term gradien nis-centring correction in SST frame Earth Gravity Gradient \rightarrow eccentricity < 5.10⁻³ S/C position tracking (Doppler) : < 7m, < 14m, 100m @ fep Pointing : 10⁻³ rad with variations < 10 µrad (inertial) & 10 µrad (spin) @ fep Mass Off-Centering → Angular velocity variations < 10⁻⁹ rad/s (spin) @ fep Angular accelerations variations < 10⁻¹¹ rad/s² (inertial) & 5 10⁻¹² rad/s² (spin) @ fep Sensitivity Matching Drag-Free Control $< 3.10^{-10} \text{ms}^{-2} \text{Hz}^{-1/2}$ and $< 10^{-12} \text{ms}^{-2}$ variations @ fep

In	strument characteristic	cs and in-orbit calibration :	
•	Resolution :	< 2.3 10 ⁻¹² ms ⁻² Hz ^{-1/2} and 2.6 10 ⁻⁹ rads ⁻² Hz ^{-1/2}	
•	Sensitivity stability	< 6.8 10 ⁻⁸ sine (FEEU thermal effect) and 1.2 10 ⁻⁵ Hz ^{-1/2} @ fep	
•	SF matching [*] :	< 1.5 10 ⁻⁴	
•	with stability :	< 0.3 10 ⁻⁸ sine (SU thermal effect) and 3.10 ⁻⁶ Hz ^{-1/2} @ fep	
•	Alignment matching'	': < 5.10 ⁻⁵ rad	
•	with stability :	<1.5 10 ⁻⁹ rad sine (SU thermal effect) and 3.10 ⁻⁷ rad Hz ^{-1/2} @ fep)
			P. Touboul, Space Sci Rev, 2009.

MISSION SCENARIO

- Mission duration driven by gas consumption
- Mission scenario takes into account transition phase
- Assessment sessions of the satellite, the instrument, the propulsion system, the drag-free and attitude control
- But also performance sessions with magnetic, thermal excitations
- Margin for lack of data :
 - Inertial pointing : 123 orbits
 - Rotating pointing : 7 x 20 orbits
- Calibration sessions before and after the test sessions
- Possibility to perform an actual centering of the mass
- Foreseen scenario can be rescheduled according to obtained results

system guaranteed scenario: 99.8% confidence →3155 orbits

scientific objectives scenario : 80% confidence → 4921 orbits

SPACE EXPERIMENT SCENARIO : being implemented in details wrt S/C & Ground Segment Rqts

	Phases (successive sequences)	orbits	days	months	orbits with propu ON
	S/C Assessment	51	3	0,1	0
S/C & payload Operation	TSAGE Assessment	87	6	0,2	0
S/C & payload Operation	Propulsion system Assessment	73	5	0,2	20
Verification & Adjustment	AOCS laws Assessment	143	10	0,3	143
	AOCS including T-SAGE	15	1	0,0	15
$\langle \rangle$	Thruster calibration	15	1	0,0	15
$\langle \rangle$	Drag free operation	44	3	0,1	44
	Total Commisioning step 1	425	29	1	235
$\langle \rangle$	Break	200	14	0,5	0
\sim	Drag-free assessment	106	7	0,2	106
	T-SAGE Calibration Assessment	44	3	0,1	44
	Margin	145	10	0,3	145
	Total Commisioning step 2	295	20	1	295
Preliminary Tests and	Break	200	14	0,5	0
	Preliminary Test EPI SUEP & SUREF	250	17	0,6	250
EP Inertial sensor calibration	Preliminary Test EPR SUEP & SUREF	110	8	0,2	110
	Performance Test	418	29	0,9	418
	Total (Preliminary EP Tests)	778	54	2	778
Calibration of both	Break	200	14	0,5	0
	Calibration SUEP	132	9	0,3	132
EP and REF Instruments	Calibration SUREF	132	9	0,3	132
	Test EPI-SUEP, phase 0° and 90°	250	17	0,6	250
ED Teste with and	Test EPI-SUREF, phase 0° and 90°	250	17	0,6	250
EP lests with and	Test EPR-SUREF, spin 1 and 2	284	20	0,6	284
without mass centering	Test EPR-SUEP, spin 1 and 2	284	20	0,6	284
	Total (SUEP-SUREF EP Tests)	1332	92	3,0	1332
	Calibration SUEP	108	7	0,2	108
Ond collibration of both in strumouts	Calibration SUREF	108	7	0,2	108
2 nd calibration of both instruments	Test EPI-SUEP centered TM, phase 0°	125	9	0,3	125
for stability verifation.	Test EPI-SUREF centered TM, phase 0°	125	9	0,3	125
	Test EPR-SUREF centered TM, spin 1	142	10	0,3	142
	Test EPR-SUEP centered TM, spin 1	142	10	0,3	142
Tasts with mass contoring	Total(SUREP-SUREF centered TM)	750	52	1,7	750
rests with mass centering	Test EPR-EP Complement, spin 1 and 2	284	20	0,6	284
	Test EPR-SUREF Complement, spin 1 and 2	284	20	0,6	284
Additional EP Tests	Calibration SUEP	108	7	0,2	108
	Calibration SUREF	108	7	0,2	108
& calibration	Test EPI SUEP complement, phase 90°	125	9	0,3	125
	Test EPI SUREF complement, phase 90°	125	9	0,3	125
	Total consolidation tests	1034	71	2,3	1034
28 Pierre Touboul ONERA Microscop	e Total not including unavailabilities	5214	359	12	4424

Scientific and operational organisation

THE FRENCH AEROSPACE LAB

MICROSCOPE

The MICROSCOPE Science Working Group promotes the exploitation of the data & is responsible for:

- **Supervising and approving** the **evaluation** and the **validation** of the **performance** and of the calibration analysis of the instrument both on ground and in orbit,
- Selecting the proposals for the data processing in response to the calls, with new Co-Is when needed,
- **Reviewing the scientific goals of the mission** at regular intervals in the light of the results,
- Approving the final scientific data products to be distributed to the community,
- Reviewing the organisation of the data archive,
- **Promoting the exploitation of the data and the diffusion of the information (colloquia...).**

Scientific organization : Science Working Group

ONERA

THE FRENCH AEROSPACE LAB

PI (ONERA) who is the Chairperson	Pierre Touboul	ך	
co-PI (OCA)	Gilles Metris		Mission – Core Team
ZARM co-I for Space Physics	Claus Lämmerzhal		
DLR co-I	Hansjoerg Dittus	L	
General Relativity and Gravitation	Thibault Damour	ך	
Fundamental Interactions	Pierre Fayet		
Interdisciplinary Physics	Serge Reynaud		Scientific
Earth gravity field	Isabelle Planet		Experts
Aeronomy	Pieter Visser		Per domain
European scientist representative of similar space missions	Tim Sumner		
CNES Fundamental Physics coordinator	Sylvie Léon-Hirtz		Invited - Permanent
CMS manager	Manuel Rodrigues		remanent
CNES project manager	Yves André		Invited
Payload manager	Manuel Rodrigues		when needed
CECT chairman	Alain Robert		

New Investigators and data policy

NICROSCOPE

- Validation Period:
 - Start: reception of the first data
 - End: when the first data set is calibrated and validated (decision of SWG)
 - Status: not released data outside SPG and SWG ;
 - Possible publication in agreement with the PI, SWG and Cnes Document (1)
- Diffusion Period:
 - Begins at the end of the validation period
 - Status: data dissemination to the whole community; no restriction on publication.
- New investigators can be selected after the call for ideas and for proposals, for the use of data during the property (development + validation) period
- Proposals can address the main objective of MICROSCOPE or other objectives in fundamental physics or other themes
- Proposals and applicants are selected by SWG
- The new investigators can have access to the data during the validation period in the framework described in the document (1)

(1) " MICROSCOPE Science Cooperation Rules " CNES/DSP/SME-2013/20946 on 2013/12/06

Conclusion

- The instrument is being integrated in its satellite cocoon
- The satellite integration with two panels is being performed
- Launch foreseen on Soyouz in April 2016 as a secondary passenger with Sentinel 1B.
 Cnes contract in July 2014
- The satellite control center and CECT is being developed in Cnes
- The Science Mission Center is being developed in Onera
- 5th of September 2014: 1st tests of interface and exchanges of representative data with CNES

END Thanks Questions

