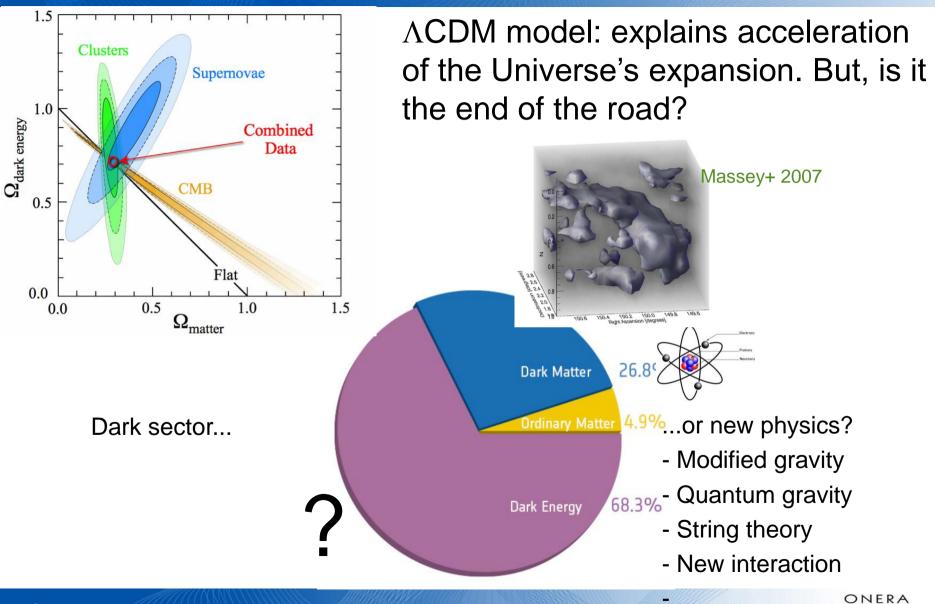
Constraining screening mechanisms with MICROSCOPE


JO

Joel Bergé (ONERA) Jean-Philippe Uzan (IAP) Quentin Baghi (ONERA)

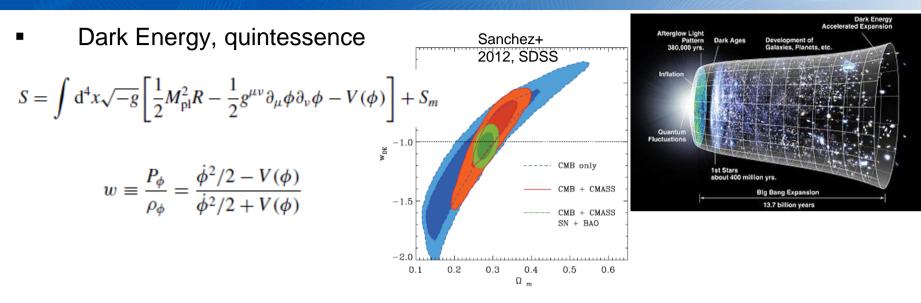
return on innovation

Do we need new physics?

THE FRENCH AEROSPACE LAB

New physics

- Modified gravity
 - Scalar-vector-tensor theories
 - Modified action theories (generalizes GR's action), eg f(R)


$$S_{\rm GR} = \int \sqrt{-g} R \,\mathrm{d}^4 x$$

- Loop quantum gravity
- String theory
- Extra scalar field associated to a long range fifth force, coupled to matter (CDM and matter) -- chameleon, dilaton...

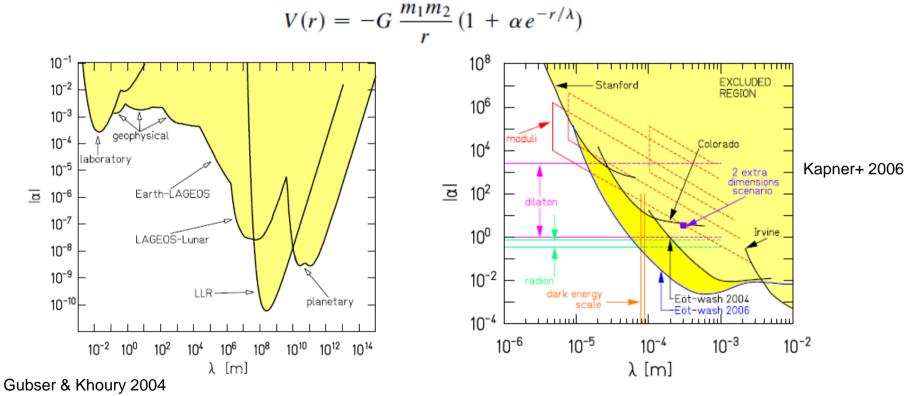
Predict Equivalence Principle violation e.g. due to coupling's dependence on matter species => finding such a violation will be a smoking gun for new physics beyond GR.

Motivations for new scalar fields

 String theory: compactification into our low-energy, 4D space results in several massless scalar fields

According to string theory, the universe has extra dimensions curled up into a Calabi-Yau shape.

Variation of constants


Some claims of variation of the fine structure in time of some parts in 10^{15} (Uzan 2012)

-> modeled as a coupling between matter and a scalar field

Long range => should be easily seen in Solar System / Earth experiments of 1/r² law and EP tests.

But we don't see them.

Don't they exist, or do they just hide themselves?

Under some conditions, a scalar field which couples to matter can become hidden to our measurements and evade the constraints

⇒ The field has no detectable signature in these conditions, but behaves differently in other conditions. E.g., long-range in low-density regions (cosmological scales) but small-range in high-density regions (Earth, Solar System).

Zoology of screening mechanisms:

- Mass depends on local density: *chameleon*
- Coupling with matter depends on local density: symmetron, Galileon, dilaton
- Mass / coupling depends on local gravitational acceleration: MOND-type theories
- Coupling depends on local curvature: Vainshtein mechanism

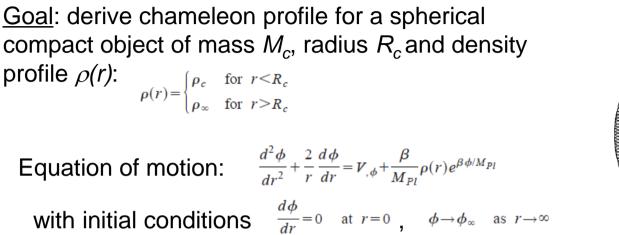
Chameleon in short (Khoury & Weltman 2004)

- Scalar field coupled to matter (with possibly different couplings between different matter species => can violate Equivalence Principle)
- Runaway potential, monotonic, decreasing
- Mass depends on local density
- Additional screening through thin-shell screening

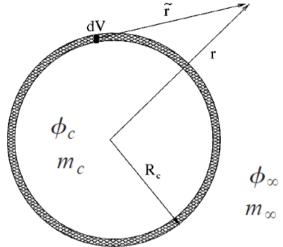
Abundant literature:

- Fifth force searches on Earth (Eöt-Wash)
- Solar System tests (Hees+ 2012)
- Cosmology (Brax+)

Chameleon: more details (Khoury & Weltman 2004)


Action:
$$S = \int d^4x \sqrt{-g} \left\{ \frac{M_{Pl}^2}{2} \mathcal{R} - \frac{1}{2} (\partial \phi)^2 - \mathcal{V}(\phi) \right\} - \int d^4x \mathcal{L}_m(\psi_m^{(i)}, g_{\mu\nu}^{(i)}) \qquad \psi_m^{(i)}: \text{ matter fields}$$

Potential $V(\phi)$ of the runaway form. E.g Ratra-Peebles $\mathcal{V}(\phi) = M^{4+n} \phi^{-n}$.
Coupling to matter fields of the form $e^{\beta_i \phi/M_{Pl}}$ β_i : dimensionless constants ~1
Equation of motion $\nabla^2 \phi = \mathcal{V}_{,\phi} + \sum_i \frac{\beta_i}{M_{Pl}} \rho_i e^{\beta_i \phi/M_{Pl}}$
 $=> \text{ dynamics of } \phi \text{ are governed}$
by the effective potential:
 $\mathcal{V}_{eff}(\phi) = \mathcal{V}(\phi) + \sum_i \rho_i e^{\beta_i \phi/M_{Pl}}$
Mass of the field: $m_{min}^2 = \mathcal{V}_{,\phi\phi}(\phi_{min}) + \sum_i \frac{\beta_i^2}{M_{Pl}^2} \rho_i e^{\beta_i \phi_{min}/M_{Pl}}$
 $\mathcal{V}_{,\phi}(\phi_{min}) + \sum_i \frac{\beta_i}{M_{Pl}} \rho_i e^{\beta_i \phi_{min}/M_{Pl}} = 0$


 ϕ_{min} and m_{min} depend on local density: larger ρ correspond to smaller ϕ_{min} and larger mass => field can be massive enough on Earth to evade constraints but light enough in space to affect the gravitational dynamics (with no fine-tuning of β !).

ONERA

THE FRENCH AEROSPACE LAB

Chameleon: profile and thin-shell screening

THE FRENCH APPOSPACE IA

Inside the object, $m_c >> m_{\infty}$, $\phi \sim \phi_c$, a volume element dV contributes $\exp(-m_c r) =>$ exponentially suppressed. Only the volume elements close enough (ΔR_c) from the surface contribute to the exterior profile.

$$\phi(r) \approx -\left(\frac{\beta}{4\pi M_{Pl}}\right) \left(\frac{3\Delta R_c}{R_c}\right) \frac{M_c e^{-m_{\infty} r}}{r} + \phi_{\infty} \qquad \frac{\Delta R_c}{R_c} = \frac{\phi_{\infty} - \phi_c}{6\beta M_{Pl} \Phi_c} \qquad \text{assuming thin-shell} \quad \left(\frac{\Delta R_c}{R_c}\right) \ll 1$$

For small objects, $\frac{\Delta R_c}{R_c} > 1$ and $\phi(r) \approx -\left(\frac{\beta}{4\pi M_{Pl}}\right) \frac{M_c e^{-m_{\infty} r}}{r} + \phi_{\infty}$
Thin-shell suppression factor
No thin-shell screening

Chameleon: fifth force, EP test and constraints

Chameleon force on a test particle of mass *M*: $\vec{F}_{\phi} = -\frac{\beta}{M_{Pl}} M \vec{\nabla} \phi$

Profile on Earth + atmosphere (thin-shelled) and beyond:

$$\phi(r) \approx \begin{cases} \phi_{\oplus} & \text{for } 0 < r \le R_{\oplus}, \\ \phi_{atm} & \text{for } R_{\oplus} \le r \le R_{atm}, \\ -\left(\frac{\beta}{4\pi M_{Pl}}\right) \left(\frac{3\Delta R_{\oplus}}{R_{\oplus}}\right) \frac{M_{\oplus}e^{-m_G(r-R_{atm})}}{r} + \phi_G & \text{for } r \ge R_{atm}, \end{cases}$$

$$\frac{\Delta R_{\oplus}}{R_{\oplus}} = \frac{\phi_G - \phi_{atm}}{6\beta M_{Pl} \Phi_{\oplus}} < 10^{-7}$$

=> Fifth force on a test particle of mass *M* and coupling β_i :

$$|\vec{F}_{\phi}| = 2\beta\beta_i \left(\frac{3\Delta R_{\oplus}}{R_{\oplus}}\right) \frac{M_{\oplus}M}{8\pi M_{Pl}^2 r^2}$$

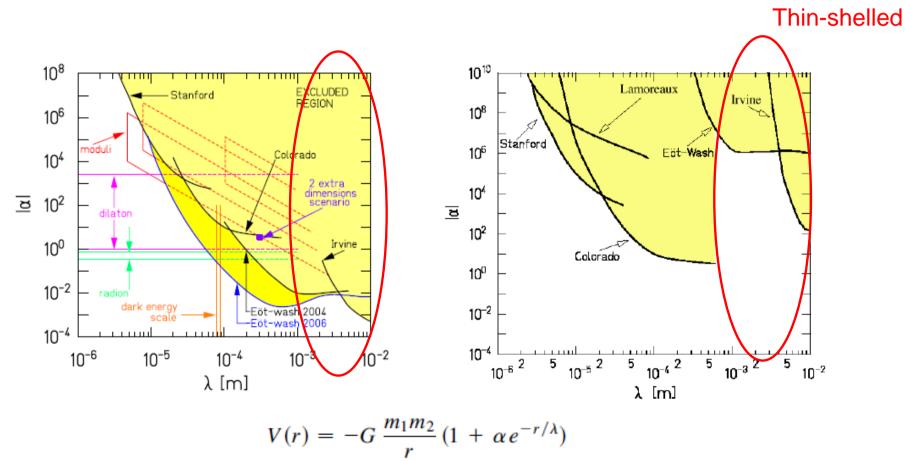
Magnitude of EP violation:

$$\eta = 2 \frac{|a_1 - a_2|}{a_1 + a_2} \sim 10^{-4} \beta^2 \frac{\Delta R_{\oplus}}{R_{\oplus}}$$

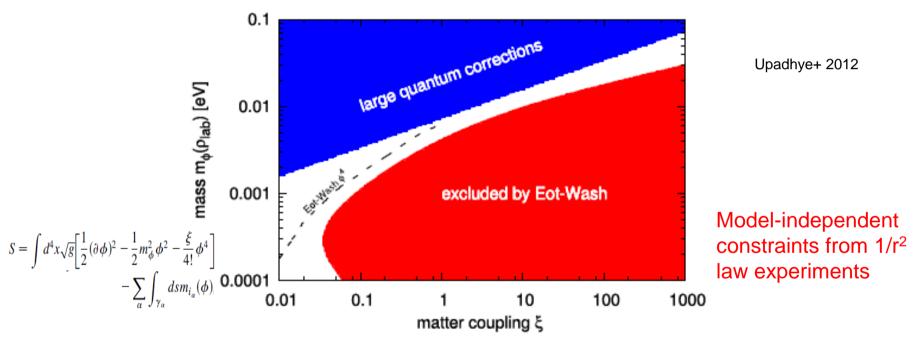
Constraints on the chameleonmediated interaction's range for a Ratra-Peebles potential

$$V(\phi) = M^{4+n} \phi^{-n}$$

Atmosphere $m_{atm}^{-1} \le 1 \text{ mm}-1 \text{ cm}$, Solar System $m_G^{-1} \le 10-10^4 \text{ AU}$, Cosmological $m_0^{-1} \le 0.1-10^3 \text{ pc}$, scales


Behavior significantly different in space!

Looser constraints on fifth force


Gubser & Khoury 2004

$$S = \int d^4 x \sqrt{g} \left[\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 - \frac{\xi}{4!} \phi^4 \right] - \sum_{\alpha} \int_{\gamma_{\alpha}} ds m_{i_{\alpha}}(\phi)$$

Allowed mass and coupling values

Chameleon theories are effective field theories => quantum corrections should remain small compared to the classical potential => cannot have too large a mass

Chameleon fields already very much constrained: a small improvement in experiments could rule out all chameleon models

Expectation for chameleon detection with MICROSCOPE

Order of magnitude estimate, based on Khoury & Weltman 2004

MICROSCOPE can see a chameleon-induced WEP violation if it is not thinshelled, i.e. if $\Delta R_{MIC}/R_{MIC} > 1$

Chameleon (the Earth is thin-shelled):

$$\phi(r) \approx \begin{cases} \phi_{\oplus} & \text{for } 0 < r \leq R_{\oplus}, \\ \text{for } R_{\oplus} \leq r \leq R_{atm}, \\ -\left(\frac{\beta}{4\pi M_{Pl}}\right) \left(\frac{3\Delta R_{\oplus}}{R_{\oplus}}\right) \frac{M_{\oplus}e^{-m_G(r-R_{atm})}}{r} + \phi_G & \text{for } r \geq R_{atm}, \end{cases} \qquad \frac{\Delta R_{\oplus}}{R_{\oplus}} = \frac{\phi_G - \phi_{atm}}{6\beta M_{Pl}\Phi_{\oplus}} < 10^{-7}$$
At *r*=700km, $\phi(r) \sim \phi_G$
MICROSCOPE's Newtonian potential ~ $10^{-15}\Phi_{\oplus}$

$$\Delta R_{MIC}/R_{MIC} > 1 \text{ if } \frac{\Delta R_{\oplus}}{R_{\oplus}} > 10^{-15}$$

$$\implies \text{EP violation} \quad \eta \approx 10^{-4}\beta^2 \frac{\Delta R_{\oplus}}{R_{\oplus}}$$

$$\beta^2 \times 10^{-19} < \eta < \beta^2 \times 10^{-11}$$

ONERA

THE FRENCH AEROSPACE LA

We need MICROSCOPE-specific predictions

- Pick up our preferred screening mechanism(s)
- Derive trustworthy field equations in the satellite and precise expected physical effect on EP test.
- Link to full instrument (electronics and mechanics) simulator.
- Bricks already exist:
 - Simulink model of the instrument (performance group)
 - Physics simulation (OCA –G. Metris, L. Serron-- CMS)
 - Payload simulator at CNES

The envisioned team

- Core members
 - Joel Bergé: ONERA Research scientist, member of MICROSCOPE CMS group, member of MICROSCOPE performance group
 - Jean-Philippe Uzan: IAP theoretical physicist
 - Quentin Baghi: ONERA PhD student
- A PhD student starting fall 2015?
- Performance group
- CMS
- Anyone interested

Conclusion

- We have good reasons to add new scalar fields in physics
- To account for current tests of gravity, those scalar fields must either be very fine-tuned or remain hidden
- Several screening mechanisms have been proposed, that allow us to still add scalar fields
- EP violations are expected
- Significant EP violation (bigger than on Earth) could be seen with MICROSCOPE if a chameleon field exists.
- Otherwise, possibility to rule out all chameleons models.
- MICROSCOPE can be a unique experiment in the near future to make progress on constraining screening mechanisms.