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Abstract The MICROSCOPE space mission aims at testing the Equivalence Principle (EP)
with an accuracy of 10−15. The test is based on the precise measurement delivered by a
differential electrostatic accelerometer on-board a drag-free microsatellite which includes
two cylindrical test masses submitted to the same gravitational field and made of different
materials. The experiment consists in testing the equality of the electrostatic acceleration
applied to the masses to maintain them relatively motionless at a well-known frequency.
This high precision experiment is compatible with only very little perturbations. However,
aliasing arises from the finite time span of the measurement, and is amplified by measure-
ment losses. These effects perturb the measurement analysis. Numerical simulations have
been run to estimate the contribution of a perturbation at any frequency on the EP violation
frequency and to test its compatibility with the mission specifications. Moreover, different
data analysis procedures have been considered to select the one minimizing these effects
taking into account the uncertainty about the frequencies of the implicated signals.

Keywords MICROSCOPE · Test of the Equivalence Principle · Data processing ·
Measurement losses

1 Introduction

The Equivalence Principle (EP) is at the basis of General Relativity and its main conse-
quence is the Universality of Free Fall, that is to say that the acceleration of an object in
a gravitational field is independent of its mass and its internal composition. It leads to the
equivalence between the inertial mass (which measures the resistance of an object to accel-
eration) and the gravitational mass (which is used to compute the gravitational force exerted
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by or applied on an object). The Universality of Free Fall has been tested throughout the cen-
turies with an improving accuracy. Lately, experiments using sophisticated torsion-balances
have led to a record accuracy of a few 10−13 (Gundlach et al. 2009). However, the accuracy
of these on-ground experiments is limited by the numerous perturbations of the terrestrial
environment. It is necessary to test the Equivalence Principle with an even better accuracy
because it is a direct test of Einstein General Relativity (Will 2009) and because some unifi-
cation theories which try to merge gravitation with the three other fundamental interactions
expect a violation of the EP below 10−14 (Damour et al. 2002). Being performed in space,
the MICROSCOPE mission will be able to overcome these limitations in order to test the
Equivalence Principle with an accuracy of 10−15 never reached before (Touboul et al. 2001).

MICROSCOPE is a 300 kg microsatellite developed by CNES to orbit around the Earth
for a two years mission. The launch of the satellite is scheduled for 2016. The onboard
payload is composed of two differential electrostatic accelerometers developed by ONERA,
each one being composed of two imbricated cylindrical test masses in electrostatic levita-
tion. The masses are surrounded by a set of electrodes. Their positions along the three axes
are detected thanks to capacitive sensors and control loops with electrostatic actuation keep
them concentric at the center of the accelerometer cage, so that they both follow the same
trajectory. The same electrodes allow both the action and the detection of the mass position
thanks to a frequency separation: the detection is performed with a 100 kHz pumping signal
while the servo-loop channels exhibit frequency of a few Hertz. The generated voltage is
proportional to the mass acceleration. The acceleration measurement is then subsampled to
4 Hz. The two masses are concentric and therefore submitted to the same gravitational field.
For one of the differential accelerometer, the two masses are made of different composition.
A difference between the measured forces applied to maintain them on the same trajectory
would therefore indicate a violation of the Universality of Free Fall, and thus of the EP. The
second accelerometer includes two test masses with the same composition and enables to
test the measurement accuracy (Touboul et al. 2012).

The potential EP violation signal is expected at a well identified frequency, fEP . A spe-
cial effort has been made to reduce all the perturbations at fEP (Touboul 2009). In particular,
an in-flight calibration of the instrument will be performed in order to correct the scien-
tific measurement from the perturbations due to the instrumental parameters which limit the
measurement accuracy at fEP (Josselin et al. 2010). However, two monochromatic signals at
distinct frequencies are not fully uncorrelated over a finite duration, in contrary to what hap-
pens over an infinite duration. The consequence for the MICROSCOPE experiment is that
a perturbation at a frequency different from the EP frequency will have a non-null contribu-
tion at fEP . This contribution, which we call “projection”, is proportional to the amplitude
of the perturbation and depends on its frequency. It is therefore necessary to determine this
proportionality factor in order to define the specifications on the perturbations amplitude at
every frequency. Moreover, the study of this phenomenon demonstrates the possibility to
adjust the observation time span with respect to the main perturbations period in order to
reduce the projection rates for the most important perturbations. Finally, the projection is
modified in case of missing data. This effect is studied in order to determine appropriate
procedures to process the data in the presence of measurement losses which enable to keep
low amplitudes of projection on fEP .

This paper first presents the influence of the finite duration of the observation window
on the determination of the EP violation parameter and then focuses on the method applied
to reduce the impact of the main perturbations. It will then expose the influence of the
measurement losses and the procedures selected to deal with them.
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2 Influence of the Observation Window

2.1 Impact of a Perturbation Signal on the Extraction of the EP Violation Parameter

The signal provided by the MICROSCOPE instrument is the half difference of the measure-
ment of the electrostatic acceleration (deduced form the measured voltage and instrument
parameters) applied to the two test masses of a differential accelerometer to keep them rel-
atively motionless. This differential acceleration includes the potential violation signal due
to a non-null EP violation parameter δ = mg2

mI2
− mg1

mI1
, where mg is the gravitational mass and

mI is the inertial mass respectively of the internal test mass (index 1) and external test mass
(index 2). A second order model of the measurement has been defined (Levy et al. 2010).
The cylindrical test masses can move and are electrostatically controlled along the six de-
grees of freedom (three translations and three rotations). For the EP test, the measurement
along the X axis of the instrument (the axis of cylinders, whose sensitivity exhibits the best
sensitivity) is used. The form of the acceleration measurement is:

Γmes,dx = 1

2
· gx · δ + Γinst,x (1)

with:

– gx the component of the gravitational acceleration along the X axis of the instrument;
– Γinst the perturbative acceleration that reduces the accuracy of the EP parameter deter-

mination. This acceleration is composed of a stochastic part (noise of the instrument and
of the drag-free system) that can be reduced by integrating the measurement over a large
duration, and an harmonic part that is due to instrumental parameters (scale factors, off-
centering of the test masses, misalignment and coupling between the axes, quadratical
parameters). This last part is largely reduced by calibrating these parameters in order to
correct the measurement from their contributions (Hardy et al. 2013).

The objective of the MICROSCOPE mission is to detect a potential EP violation signal.
The EP violation parameter δ is extracted from the observed measurement Γmes,dx,corr , called
Sobs . The model of the measurement used for the analysis is, for all sample times ti :

Sobs(ti) = δSEP (ti) (2)

with:

– Sobs = Γmes,dx,corr the half difference of the measured acceleration after correction from
the impacts of the instrumental parameters thanks to the in-orbit calibration of the instru-
ment;

– SEP = 1
2 · gx the half gravitational acceleration along the measurement axis. This accel-

eration is determined with a high precision by using a Earth gravity field model.

The Least Square estimated solution is:

δ̂ = 〈SEP ,Sobs〉
〈SEP ,SEP 〉 (3)

with 〈X,Y 〉 the scalar product of X and Y and N the length of the vectors:

〈X,Y 〉 =
N∑

i=1

X(ti)Y (ti)
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A disturbing signal Sd which is not identified and not taken into account in the measurement
model modifies the estimation by:

�δ = 〈SEP ,Sd〉
〈SEP ,SEP 〉 (4)

When we consider the simple but sufficient hypothesis of two masses falling along a cir-
cular orbit around the Earth, considered as a gravitational monopole, the EP signal SEP is
a sine signal whose frequency fEP and phases φEP are well-known. Two different pointing
of the satellite will be experimented: inertial and spinning. In the case of a satellite in iner-
tial pointing, the gravitational field is modulated by the satellite orbital frequency. The test
frequency fEP is therefore the orbital frequency (1.6 · 10−4 Hz, corresponding to an orbital
period of about 6000 s). In the case of a spinning pointing, fEP is the sum of the orbital fre-
quency and the spin frequency (6,1 · 10−4 Hz, chosen so that fEP is close to the minimum
of the instrumental noise).

The residual perturbative acceleration at fEP included in the observed signal Sobs after
calibration and correction of the measurement introduces an error on the determination of
the EP violation parameter δ. The performance of the satellite attitude and orbit control
system, the performance of the instrument and its in-orbit calibration enable to keep this
error compatible with the mission accuracy objective by keeping the residual perturbation at
fEP to an acceptable level. However, perturbations of strong amplitude may appear at other
frequencies and have an impact on the determination of the EP violation parameter.

For this paper, the disturbing signal Sd is considered to be a monochromatic signal at a
frequency different from fEP .

SEP = AEP sin(ωEP t + φEP ) (5)

Sd = Ad sin(ωdt + φd) (6)

The impact of the disturbing signal �δ is proportional to AEP Ad

A2
EP

= Ad

AEP
. For the sake of

simplicity, we define the projection rate τ of a frequency fd on the test frequency fEP as the
normalized component at fEP presented by a monochromatic perturbation at fd for a given
analysis time span T . The projection rate is linked to the impact of a perturbation at fd on
the estimation of the Equivalence Principle parameter at fEP :

τ = �δ · AEP

Ad

τ = 〈sin(ωEP t + φEP ), sin(ωdt + φd)〉
〈sin(ωEP t + φEP ), sin(ωEP t + φEP )〉 = 〈sEP , sd〉

〈sEP , sEP 〉
(7)

with SEP = AEP sEP and Sd = Adsd .

2.2 Analytical Approximation

To correspond to the discrete measurement, the scalar product is discrete and defined on a
finite number of frequencies. However, it is possible to approximate it with a continuous
integral for an analytical evaluation.

〈X,Y 〉 =
∫ T

t=0
X(t)Y (t)dt (8)
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with T the analysis time span.
For a perturbation pulsation ωd different from the EP pulsation ωEP :

〈sEP , sd〉 =
∫ T

t=0
sin(ωEP t + φEP ) sin(ωdt + φd)dt (9)

= 1

2

1

ωEP − ωd

[
sin

(
(ωEP − ωd)t + (φEP − φd)

)]T

0

− 1

2

1

ωEP + ωd

[
sin

(
(ωEP + ωd)t + (φEP + φd)

)]T

0
(10)

For the rest of this analysis, the measurement time span T is supposed to be chosen very
near an exact number of the EP period (see Sect. 3 for the explanation of this choice):

ωEP (T − �te) ≤ 2kπ ≤ ωEP T (11)

with �te the measurement sampling period. �te = 0.25 s and �te � T , we can therefore
approximate: ωEP T ≈ 2kπ .

The result of the scalar product is then:

〈sEP , sd〉 ≈ 1

2

1

ωEP − ωd

[
sin(−ωdT + φEP − φd) − sin(φEP − φd)

]

− 1

2

1

ωEP + ωd

[
sin(ωdT + φEP + φd) − sin(φEP + φd)

]
(12)

Besides, the denominator of the projection rate is:

〈sEP , sEP 〉 =
∫ T

t=0
sin2(ωEP t + φEP )dt

= 1

2

(
T − 1

2ωEP

sin(2ωEP + 2φEP )

)

≈ T

2
(13)

because T � TEP = 2π
ωEP

.
The projection rate therefore is:

τ ≈ 1

T

1

ωEP − ωd

[
sin(−ωdT + φEP − φd) − sin(φEP − φd)

]

− 1

T

1

ωEP + ωd

[
sin(ωdT + φEP + φd) − sin(φEP + φd)

]
(14)

The error due to the approximation ωEP T ≈ 2kπ is less than �te
T

, whose order of magnitude
is 10−6 for short duration sessions and 10−7 for long duration sessions.

The projection rate on the EP violation signal is inversely proportional to the measure-
ment time span. It is null if the analysis time is an integer multiple of the disturbance period
(ωdT = 2kπ , k ∈ Z). The two signals sEP and sd are indeed orthogonal if they both match
with a discrete Fourier line over the observation window T . This property will be used in
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Sect. 3 to optimize the choice of the analysis duration and of the satellite spin frequency in
order to minimize the impact of the most important perturbations.

For perturbations at lower frequencies, ωd is negligible compared to ωEP and we can
approximate:

τLF ≈ 1

ωEP T

[
sin(−ωdT + φEP − φd) − sin(φEP − φd)

− sin(ωdT + φEP + φd) − sin(φEP + φd)
]

(15)

τLF ≈ − 4

ωEP T
cosφEP sin

(
ωdT

2

)
cos

(
ωdT

2
+ φd

)
(16)

The projection rate of the perturbation on fEP is dependent on the phases of both the EP
violation signal and the perturbation signal. We are interested in the worst case projection
rate, and it is therefore maximized as a function of φd :

τLF,max = 4

ωEP T

∣∣∣∣sin

(
ωdT

2

)∣∣∣∣| cosφEP | (17)

The projection rate oscillates as a function of the perturbation pulsation ωd , between null and
maximal values, drawing an envelope curve which varies as the inverse of the measurement
duration T :

τLF,env = 4

ωEP T
| cosφEP | (18)

At lower frequencies, the envelope curve is therefore independent of the perturbation fre-
quency.

For perturbation at higher frequencies, ωd � ωEP and the approximated projection rate
is:

τHF ≈ − 4

ωdT
sinφEP sin

(
ωdT

2

)
sin

(
ωdT

2
+ φd

)
(19)

The equation of the envelope curve (maximized as a function of φd ) is:

τHF,env = 4

ωdT
| sinφEP | (20)

At higher frequencies, the slope of the envelope curve is therefore −1.

2.3 Numerical Simulation

The Least Squares Method leads to the same solution when applying a discrete Fourier
Transform to each side of the equation. The scalar product can therefore be computed in the
Fourier domain:

〈X,Y 〉 = 	(
FT (X)(fEP )

)	(
FT (Y )(fEP )

) + 
(
FT (X)(fEP )

)
(
FT (Y )(fEP )

)
(21)
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In the case of a sine signal s = sin(2πf t + φ) and with a rectangular window (Wrect (ti) =
1 if ti ∈ [0, T ],0 otherwise):

FT (s)(fEP ) = 1

2i
exp

(
−iπ

fEP − f

fe

(N − 1)

)
exp(iφ)

sin(π
fEP −f

fe
N)

sin(π
fEP −f

fe
)

− 1

2i
exp

(
−iπ

fEP + f

fe

(N − 1)

)
exp(−iφ)

sin(π
fEP +f

fe
N)

sin(π
fEP +f

fe
)

(22)

with N the number of samples and fe the sampling frequency.
This method is implemented in the numerical simulation in order to compute the projec-

tion rate for perturbations whose frequency ranges from 10−5 Hz to 0.1 Hz, corresponding
to the frequency range where the disturbing signals are expected. As shown by the analytical
computation in Sect. 2.2, the resulting projection rate τ is dependent on the phases of the
two signals, φEP and φd . The phase φEP of the potential EP violation signal will be known
for the data analysis. Moreover, as the phase depends on the orientation of the satellite, we
will be able to chose it; several criteria (not only the numerical aspects tackled on this paper)
could lead to different choices, and in practice various phases will be tested. In this study, a
worst-case value has been used for the specifications definition, and the figures presented in
this paper thus represent the maximal value τmax obtained when φEP and φd vary between
0 and 2π .

Figure 1 presents the projection rate of a perturbation on fEP as a function of the per-
turbation frequency fd in case of a rotating pointing and an inertial pointing of the satellite.
The variations of the curve correspond to those predicted by the analytical computation. The
pattern has been defined from the envelope plot. It takes into account the local worst case
value of the projection rate at each frequency in order to specify the amplitude of the pertur-
bation signals that can be accepted for the experiment for a given duration of the observation
window. Two different patterns have been defined for the rotating and the inertial pointing,
because the implicated frequencies as well as the observation duration are different.

2.4 Apodisation Windows

It is possible to use apodisation windows to considerably reduce the projection rate on
fEP . Three different windows have been tested for the extraction of the EP violation signal
from the MICROSCOPE measurement: the Hann, the Hamming and the Blackman window,
which are presented in Fig. 2. The principle of the apodisation is to make the signal converge
slowly to zero at the edges of the window, in order to avoid the aliasing effects. As shown
by Fig. 2, their effect in the Fourier domain is a much better attenuation of the side-lobes,
and thus a reduction of the projection rates on the EP frequency.

For the first section of this paper, a simple rectangular window, Wrect , has been used. We
will now study the effect of the Hann window:

WHann = 1

2

(
1 − cos

(
2π

t

T

))
= 1

2

(
1 − cos(ωmes t)

)
(23)

where T is the measurement time span and ωmes = 2π
T

. The same analytical computation as
in Sect. 2.2 is developed to compute the temporal scalar product between the EP violation
signal SEP and a perturbation signal Sd with a Hann window:

〈SEP ,Sd〉 =
∫ T

t=0
SEP (t)Sd(t)WHann(t)dt (24)
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Fig. 1 Projection rate of a perturbation on fEP as a function of the perturbation frequency in case of a
rotating pointing of the satellite (a) or an inertial pointing (b). Note the 0 slope for low frequencies and the
−1 slope for high frequencies

The low frequency approximation gives:

τLF,Hann = τLF,rect

1

1 − (
ωEP

ωmes
)2

≈ τLF,rect

(
ωmes

ωEP

)2

(25)

For the 120 orbits inertial sessions, the global pattern of the projection rate on fEP is there-
fore 7 × 10−5 times weaker when using a Hann window instead of a simple rectangular
window.
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Fig. 2 Comparison between
three apodisation windows and
the rectangular window, in the
temporal and Fourier domains

At high frequencies, we can approximate:

τHF,Hann = τHF,rect

1

1 − (
ωd

ωmes
)2

(26)

The ratio between the projection rates on fEP obtained with a rectangular window and those
obtained with a Hann window increases as a function of the perturbation frequency.

Similar studies have been led for other apodisation windows. They have been confirmed
by numerical simulations. As shown in Fig. 3, the apodisation windows are effective in the
case of the MICROSCOPE measurement. The best results are obtained with the Blackman
window. However, we chose not to use any apodisation window for the simulations to fol-
low. The definition of the specifications on the maximal amplitude of the perturbations is
therefore based on the worst-case results of the projection rates. These specifications are
used to define the satellite configuration. This choice avoids any a priori constraint on the
future data process.

3 Choice of the Analysis Time Span and Spin Frequency

The most important perturbations (thermal effects, pointing variations. . . ) occur at frequen-
cies which are multiples of the orbital frequency in inertial pointing and linear combinations
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Fig. 3 Projection rate of a perturbation on fEP as a function of the perturbation frequency, using different
windowing methods

Table 1 Special specifications
for some of the linear
combinations of forb and fspin

in spinning pointing and
projection rate in the worst case
combination of errors on the
determination of forb and the
realization of fspin

Frequency Global pattern
value

Specification Projection rate
of the singular
frequencies

forb 1.25 × 10−2 10−4 9.8 × 10−6

fspin − 2forb 1.25 × 10−2 3.3 × 10−4 3.6 × 10−5

2forb 1.25 × 10−2 2.5 × 10−4 2.3 × 10−5

fspin − forb 4.0 × 10−2 3.3 × 10−4 3.2 × 10−5

3forb 4.0 × 10−2 5 × 10−4 4.8 × 10−5

fspin 4.0 × 10−2 3.3 × 10−4 3.2 × 10−5

fspin + forb 1 1 1

fspin + 2forb 4.0 × 10−2 10−3 7.9 × 10−5

of the orbital and spin frequencies in rotating mode. These particular frequencies will be
called singular frequencies in the rest of the paper:

fd,sing = n1forb + n2fspin (27)

with n1 and n2 being integers and fspin being possibly null in the case of an inertial point-
ing. These perturbations have such an amplitude that the direct application of the global
pattern defined with the envelope curve of the projection rate (see Fig. 1) leads to projection
amplitudes too high to enable us to reach the accuracy objective for the EP test.

The analysis of the performances at these singular frequencies leads to define more re-
strictive specifications on the projection rates than those of the global pattern. Some of these
specifications are presented in Table 1, column 3.

The projection rates of these singular frequencies on fEP can be significantly reduced in
order to comply with the specifications if we make sure that they match with discrete Fourier
lines. In order to ensure this configuration for all those main perturbations, the analysis time
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Fig. 4 Projection rate of a
perturbation on fEP as a
function of the perturbation
frequency: zoom around 2forb .
The measurement time span T

has been optimized to correspond
to an exact number of orbits.
However, the estimated orbital
frequency has been used to
determine T . The real
perturbation is at twice the real
orbital frequency, and therefore
does not match with the
optimized projection rate

span T and the spin frequency have been chosen so that:

T = k1Torb = k2Tspin (28)

with k1 and k2 being integers. Equation (14) demonstrates that this relation ensures a null
value projection rate for all the perturbations at frequencies fd,sing-like. In case of inertial
pointing, the analysis time span has been chosen equal to 120 orbits in order to reduce the
instrumental stochastic noise to an acceptable level by integrating over this duration. In case
of rotating pointing, the analysis time span can be reduced if the spin frequency is chosen so
that the EP frequency is closer to the minimum of the instrumental noise which decreases
as the inverse of the frequency. An appropriate compromise between the minimization of
the instrumental noise and the technical constraints of the satellite attitude control system
consists in choosing k2 around 70. It enables us to reduce the analysis duration to only 20
orbits.

However, the frequencies of the implicated signals are not perfectly known, leading to
deviate slightly from the ideal case in which the projection rates are null for the singular
frequencies. The uncertainty on the orbit determination causes an error on the orbital fre-
quency which reaches 2 × 10−8 rad/s. The pointing of the satellite is realized by the attitude
control system. The input of this system is the satellite attitude which is determined by using
partly the measurement provided by the satellite star tracker and partly the angular acceler-
ation measured by the differential accelerometer, which provides a better estimation of the
attitude at high frequencies. Eight cold gas micro-thruster are then used to reach or keep the
attitude instruction. The global specification for the accuracy of the attitude control system
corresponds to a maximal error on the realization of the inertial pointing of 10−8 rad/s and
on the command of the spinning pointing of 3 × 10−8 rad/s (there are also specifications
on the spin orientation, but they are not relevant for this paper). The effect of these uncer-
tainties is illustrated in Fig. 4. These spectral shifts have been introduced in the numerical
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simulation in order to get worst case projection rates. The results are gathered in Table 1 and
demonstrate the compatibility with the specifications.

4 Measurement Losses

The previous simulations have been run using the hypothesis of a regular sampling. In prac-
tice, measurement losses may appear. They will change the measurement sampling, and
therefore the result of the scalar product of the perturbations and the EP signal, and there-
fore the projection rates.

4.1 Origin of the Measurement Losses

The measurement losses may be due to teletransmission errors. During the data transmission
from the satellite to the ground station, part of the data may be lost. Part of the missing
data could be recollected during the next fly-by, but it is impossible to guarantee a total
recollection, leading to measurement losses whose duration ranges between a few seconds
and a few hours. The experience of the PICARD mission provides a good estimation of the
losses occurrence, since the MICROSCOPE satellite will follow nearly the same orbit and
use the same station network.

Measurement may also become unexploitable in case of instrument saturation. It may
happen because of crackles caused by decreasing pressure of the gas contained in the six
thrust tanks of the satellite or because of the temperature changes of the satellite coating,
which faces alternatively the Earth and the space vacuum. The resulting measurement losses
are very short: shorter than one second.

Two procedures have been developed to deal with the measurement losses, depending on
their duration.

4.2 Short Duration Measurement Losses

For short measurement losses, two methods have been considered. The first one consists in
simply replacing the missing data with null values. The appearance of measurement losses
may either reduce or increase the projection rate on fEP . But the projection rates for the main
perturbations at the singular frequencies have been optimized to be as small as possible (see
Sect. 3), and the measurement losses will therefore tend to increase them. The compatibility
of the projection rates at the singular frequencies with the specifications is therefore the
limiting factor that will constrain the maximal duration acceptable for a measurement loss.

In the case of telemetry losses, one measurement loss of variable duration is considered
within the observation period. Numerical simulations have shown that the worst case corre-
sponds to a measurement loss appearing in the middle of the measurement session. Table 2
presents the projection rates for the main perturbations at the singular frequencies in the
presence of a one minute long measurement loss in the middle of the 20 orbits session in
rotating mode. These results are incompatible with the specifications.

A possible correction consists in the reconstruction of the missing data by interpolating
from the neighboring values. Actually a very simple interpolation is used: the mean value of
the signal before and after the measurement loss is computed. Table 2 shows that this second
method is far more efficient than the first one. Different durations of the measurement loss
have been tested: this method enables to accept one measurement loss whose duration is
up to one minute per 20 orbits (up to one loss for the 20 orbits rotating sessions, six for
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Table 2 Projection rate and
special specifications for some of
the linear combinations of forb

and fspin in spinning pointing
with a one minute measurement
loss. Method 1: replacement of
the lost data with null values;
method 2: replacement of the lost
data by the mean value of the
signal before and after the
measurement loss

Frequency Projection rate:
method 1

Projection rate:
method 2

Specification

forb 7.4 × 10−4 9.8 × 10−6 10−4

fspin − 2forb 4.2 × 10−4 3.6 × 10−5 3.3 × 10−4

2forb 6.0 × 10−4 2.3 × 10−5 2.5 × 10−4

fspin − forb 3.8 × 10−4 3.2 × 10−5 3.3 × 10−4

3forb 1.8 × 10−4 4.8 × 10−5 5 × 10−4

fspin 6.1 × 10−4 3.2 × 10−5 3.3 × 10−4

fspin + forb 1 1 1

fspin + 2forb 5.5 × 10−4 8.0 × 10−5 10−3

the 120 orbits inertial sessions) in addition to the short coating and tanks crackles. This
result has been obtained in the frame of a simulation without noise. In presence of the noise,
the interpolation based only on one point before and after the interruption is probably not
representative of the missing data. A solution to be considered will be to use the mean value
of the signal over a duration long enough to reduce the noise to an acceptable level instead
of only one point.

Moreover, a more sophisticated method is currently under study: the inpainting algo-
rithm, which was first used in the image processing domain and has been successfully
adapted to interpolate asteroseismic temporal missing data (Sato et al. 2010). This method
consists in representing the data in a dictionary where complete data are sparse and incom-
plete data are less sparse.

4.3 Long Duration Measurement Losses

Because the rejection of the main perturbations at singular frequencies is the limiting factor,
it is necessary to develop a procedure which enables to maintain low projection rates at these
frequencies to be able to deal with measurement losses longer than one minute. To this end,
the same method as the one described in Sect. 3 can be used: the measurement time span and
the adjustable frequencies are chosen so that the measurement duration corresponds to an
entire number of the EP period and of the main perturbations periods. The strategy for long
measurement losses consists in processing the data portions before and after the losses as
independent sub-sessions, while making sure that each portion duration is adjusted to get the
required orthogonality property between the EP signal and the main perturbations. In order
to get the right analysis duration for the intermediate data portions, it may be necessary to
expand the losses duration.

For the sessions in rotating pointing, this procedure is not applicable. According to
Sect. 3, the measurement time span needs to correspond both to an entire number of the
orbital period and of the spin period in order to correctly reject the main perturbations at the
singular frequencies. 20 orbits being the least common multiple of these two periods, it is
impossible to divide the session in shorter data portions that would still verify the required
property. Fortunately, the probability of occurrence of a measurement loss whose duration
is longer than one minute during a 20 orbit session is only 3 %. This is not negligible, but
an unexploitable rotating session is far less disadvantaging than an unexploitable inertial
session: they are short enough to be eventually run again.

In the case of the session in inertial pointing, the measurement time span is only required
to correspond to an exact number of orbits in order to reduce the projection rates for the
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Fig. 5 Projection rate of a perturbation on fEP as a function of the perturbation frequency: 120 orbits inertial
session with three measurement losses whose duration is one orbit

main perturbations at the singular frequencies. The strategy consists in eliminating from the
measurement the entire orbit affected by the measurement loss, so that the data portions be-
fore and after the interruption correspond to an exact number of orbits, and therefore satisfy
the property required for the singular frequencies. Numerical simulations have been run to
test the number of long measurement losses that is acceptable: three measurement losses
included in three suppressed periods of one orbit, as presented in Fig. 5. The probability of
occurrence of more than three long measurement losses during a 120 orbits session is 0.4 %,
which is considered acceptable.

5 Conclusion

For the success of the MICROSCOPE space mission, a crucial problem is to limit the impact
of possible perturbations by using appropriate methods of analysis. Because of the finite du-
ration of the measurement window, a perturbation at any frequency may be projected at the
well identified EP frequency. This phenomenon has been studied and a specification pattern
has been defined in the two cases of the instrument attitude pointing with respect to the
Earth gravity field: rotating pointing and inertial pointing. This pattern enables to take into
account the projection rates of the perturbations all over the frequency spectrum. For the
most important perturbations, additional more stringent specifications have been laid upon
their projection rates. It is therefore necessary to adjust the frequencies corresponding to the
main perturbations, mainly the orbital and the spin frequency, to get a minimal projection.
However, the projection effects are amplified by the frequencies uncertainties. Numerical
simulations of the projection rate taking into account these uncertainties have proved the
result to be compatible with the specifications. The projection can still be considerably im-
proved by using apodisation windows, but the specifications are reached even in the worst
case of a rectangular window.

The measurement losses increase the projection rate on the EP frequency. To deal with
numerous very short losses (shorter than a second) or one loss up to a minute, the missing
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data are interpolated using the value of the measurement before and after the interruption.
For measurement losses longer than a minute, the inertial session is separated in several
independent data portions, each one verifying the required orthogonality property between
the main perturbations frequencies and the EP frequency. Thanks to these procedures, the
success probability of the mission reaches a level compatible with the specification.

These procedures will be implemented in the MICROSCOPE Scientific Mission Center
(CMS) which is currently under development at ONERA.
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