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Abstract
The MICROSCOPE mission is a space experiment of fundamental physics
which aims to test the equality between the gravitational and inertial mass
with a 10−15 accuracy. Considering these scientific objectives, very weak
accelerations have to be controlled and measured in orbit. By modelling
the expected acceleration signals applied to the MICROSCOPE instrument in
orbit, the developed analytic model of the mission measurement shows the
requirements for instrument calibration. Because of on-ground perturbations,
the instrument cannot be calibrated in the laboratory and an in-orbit procedure
has to be defined. The proposed approach exploits the drag-free system of
the satellite and is an important element of the future data analysis of the
MICROSCOPE space experiment.

PACS number: 04.80.Cc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1915, Einstein enounced the equivalence principle (EP) as one of the hypotheses of his
theory of general relativity, describing the full equivalence between gravity and inertia, and,
furthermore, between reference frames under uniform gravity or undergoing accelerations
where the same laws of physics are observed. Today, the incompleteness of this theory has
been pointed out with respect to quantum physics and has led modern physicists to seek new
interactions. Nevertheless these new theories suppose EP violations at levels less than 10−12

[1]; a very accurate EP test is then fundamental for their verification. To observe a potential
signal of EP violation, tests of the universality of free fall appear to be more promising [2].
Recently, experiments have been performed [3], such as the lunar laser ranging tests [4],
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which measure the acceleration ratios between the earth and the moon relative to the sun with
a precision of 10−12 [5]. Other tests carried out in the laboratory with highly sensitive torsion
balance gave accuracies of up to 10−13. However, the very quiet environment offered on board
a satellite and the possibility, as demonstrated below, of reducing the gravity gradient effect
allows us to achieve an improvement of a few orders of magnitude. This is the goal of the
MICROSCOPE space mission which, thanks to the ultra-sensitive accelerometer technology,
will target an EP test accuracy of 10−15.

2. The MICROSCOPE space mission

2.1. Mission overview

The MICROSCOPE (MICROSatellite pour l’Observation du Principe d’Equivalence) space
mission has been selected by CNES, in cooperation with ESA, and is the first project to
perform an EP test in orbit. The satellite will be launched in 2006 and is equipped with the new
technology of the field emission electric propulsion (or FEEP) thrusters now available in
Europe and necessary for the permanent control of the satellite attitude and orbit. Its weight
will not exceed 150 kg for a payload power of less than 40 W. The mission is planned to have
a one year duration. The EP test will be performed with a dedicated differential accelerometer
developed by ONERA in France, whose technology has been assessed in space in previous
missions [6–8]. The satellite will be injected onto a sun-synchronous and quasi-polar orbit
with an altitude of about 700 km. The experiment on board the MICROSCOPE satellite is
similar to a Galileo test with two test masses made of different materials in quasi-unlimited
free fall around the earth [9].

2.2. The MICROSCOPE payload

The payload of the satellite is composed of two differential accelerometers each including
two electrostatic inertial sensors operating independently. Both differential accelerometers
are identical except that one contains test masses of different materials while both masses of
the other one are of the same material. The comparison between the measurements of these
two instruments will help us to reject systematic errors.

The operation of each inertial sensor is as follows: the six degrees of freedom of the
inertial mass are permanently controlled by combinations of electrostatic pressures applied
to it with a set of electrodes. The EP test will be performed along the axis of revolution of
the configuration (X-axis). Motions of the test masses are measured along with a resolution
of 6 × 10−10 m Hz−1/2 and controlled with a resolution better than 2.5 × 10−12 m/s2/

√
Hz

[10]. Taking into account the value of the instrument’s maximum measurement range (5 ×
10−7 m s−2 in high-resolution mode), a drag-free and attitude control system (DFACS)
combines the outputs of the accelerometers and the star sensor to reduce the non-gravitational
forces applied to the satellite. This system estimates the thrust to be continuously applied
by the thrusters in order to limit the level of the instrument linear acceleration to 3 ×
10−10 m/s2/

√
Hz and the angular acceleration to 10−8 rad/s2/

√
Hz at the frequency of the

space experiment. FEEP thrusters have been selected: these are advanced electrostatic
thrusters able to deliver thrust at a µN level with high accuracy [11].

For the selection of the material of the two test masses, a compromise between the
theoretical interests (nuclei property) and the material property has been made by selecting a
platinum–titanium couple [12].
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Figure 1. Schema of a differential accelerometer composed of two cylindrical inertial sensors,
themselves composed of three cylinders: a test mass (in yellow) surrounded by two cylinders of
electrodes.

(This figure is in colour only in the electronic version)

2.3. In-orbit measurement

In a free-fall experiment, a violation of the equivalence principle leads to the observation of
the non-equality between the ratios of the gravitational and the inertial mass (mg and mi) for
two bodies made of different materials and submitted to the same gravity field. Let us note δ,
the EP violation parameter: δ = (mg/mi)mass 1 − (mg/mi)mass 2. Considering the inertial sensor
in O1, the acceleration output is simply expressed by

$"meas =
$Fe

mi

≈ ∂2−→x1

∂ t2
− mg

mi

· $g(O1), (1)

where Fe is the electrostatic force applied to the test mass by the electrodes, g is the earth’s
gravitational field and x1 is the test-mass position with respect to the inertial reference frame.

For a differential accelerometer, the equation of the measurement is computed using the
difference between each inertial sensor outputs

$"measured,diff ≈ δ · $g(o) + [T ] · −−−→
O1O2, (2)

where [T] is the earth’s gravity gradient, and O is the centre of O1O2 considering the two test
masses controlled in the same motion. Although the major line of the earth gradient signal is
situated at twice the orbital frequency, at the EP frequency there exists a smaller line whose
amplitude is proportional to the eccentricity [13] or induced by the non-ellipsoid geoid. To
reach an accuracy of 10−15, the second term of the last equation must then be reduced either
by limiting the distance between the two masses or the amplitude of the orbital eccentricity.

The average of both inertial sensor outputs provides an estimation of the mean acceleration
undergone by the satellite and counteracted by the DFACS.

Previous experiments in space, such as the CHAMP mission, offered the possibility of
studying some of the accelerometric perturbations occurring on a small satellite at low altitude
(500 km in the case of CHAMP). In the MICROSCOPE mission, particular care has been taken
to limit these disturbances. For instance, a sun-synchronous orbit with no shadow crossing
period has been selected, the satellite is compact and stiff, and the inner thermal control is
passive. The developed techniques [14] to suppress the disturbance peak signals and to detect
and analyse the non-stationary ones are useful for MICROSCOPE data processing: the EP
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signal is a stationary, quite sine wave shape according to the rotation of the $g(o)field in the
instrument frame.

3. Calibration approach for the MICROSCOPE accelerometer

In relation to the perturbation studies of previous missions, the scientific measurements
made on the MICROSCOPE mission might be disturbed through the intrinsic defects of
the instrument. An analysis is here performed to characterize the instrument’s calibration.

The principle of operation of the differential accelerometer needs centred test masses
between pairs of electrodes but neither the test masses nor the electrodes are perfectly
cylindrical, positioned and aligned: a 2 µm tolerance has been specified for the geometry
of each part. These defects might introduce harmonics or random signals higher than the
required limit of a few 10−15 m s−2, although the amplitudes of the disturbing forces (non-
gravitational forces, earth’s gravity gradient) are reduced by the DFACS or by an in-orbit
recentring of the test masses. A calibration procedure for the instrument is then necessary
to measure the amplitudes of these defects and correct the scientific measurements by an a
posteriori data treatment.

3.1. Linear model of the instrument

Let us consider the following linear model of one inertial sensor i (with three degrees of
freedom):

"measured,i = K0,i + Mi"excitation,i + "noise,i with Mi = K1iOiSi (3)

where K0,i is the intrinsic bias of the instrument due to cage dissymetries and potential
offsets, Mi is the instrument sensitivity matrix and "n,i is the instrument intrinsic noise. The
sensitivity matrix Mi is deduced from the product of a coupling matrix (Si), an orthogonal
matrix (Oi) and a diagonal matrix (K1,i). K1,i represents the scale factors of the instrument
along the three axes. Oi is a matrix of rotation between the inertial sensor frame and the
satellite star sensor reference frame. Si matrix represents the coupling elements between the
instrument axis, induced in particular by the perpendicularity defects of the test mass (figure 2).
Considering the amplitudes of the matrix elements (1 ± 10−2 for the scale factors, 10−2 rd for
the misalignments and 10−3 for the couplings), this equation can be approximated by

"measured,i = K0,i + (I + dK1,i + dOi + dSi)"excitation,i + "noise,i . (4)

From (4), the differential accelerometer measurement is expressed by introducing what are
called the differential mode, "meas,diff, (half the difference between the two sensor outputs) and
the common mode, "meas,com, (half the sum) and by considering Mcom and Mdiff the matrices
representing, respectively, the common and the differential mode of the instrument sensitivity
matrices:
(

"meas,com

"meas,diff

)
=

(
K0,com

K0,diff

)
+ M

(
"app,com

"app,diff

)
+

(
"noise,com

"noise,diff

)

with

M =
(

I + dMcom Mdiff

Mdiff I + dMcom

)

dMcom = I + dK1,com + dOcom + dScom Mdiff = K1,diff + dOdiff + dSdiff

dK1,com = dK1,1 + dK1,2

2
dK1,diff = dK1,1 − dK1,2

2
and so on for dO and dS.

(5)

Note that the differential mode is computed for commodity in (5) by half the difference of the
accelerations in contrast to (2) which is the full difference. The first line of (5) expresses the
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At the accelerometric sensor level At the instrument level
Alignment: [Rp]Alignment: [Rm]

Coupling: [Dm] Coupling: [Dp]

Scale factor: [Km] Scale factor: [Kp]

Differential mode
⇓

Rejection of common mode accelerations

Common mode
⇓

Rejection of differential mode accelerations

Figure 2. The intrinsic defects of the differential accelerometer are decomposed in three categories
and two modes. The misalignments are typically due to the positioning and the orientations between
the concentric cylinders composing the instrument, the couplings due to their geometrical defects
and the scale factor errors due to the defects of the electrode areas.

measurement used for the drag-free control, and the second the measurement for the EP test.
In the latter, the instrument differential-mode defects introduce the satellite common-mode
acceleration (residual drag) while the instrument common-mode defects introduce the satellite
differential-mode acceleration (gravity gradient, attitude motions depending on the distance
between the two masses).

For a signal-to-noise ratio of one and the 10−15 EP test accuracy, the differential
acceleration measurement must be 8 × 10−15 m s−2 for the 700 km altitude. The total
error level occurring at the same frequency and phase as the signal to be detected must thus
be lower than 8 × 10−15 m s−2.

Different sources of disturbances have been identified in addition to the couplings and
misalignments such as the satellite self-gravity, the radiometer effect and the thermal pressure.
A total level of 10−15 m s−2 has been specified for all signals introduced by dMcom and Mdiff

matrices and the same amplitude for the disturbance signal due to the earth’s gravity gradient
and the residual distance between both test masses. Consequently, the calibration goal consists
in measuring the amplitude of this distance, dMcom and Mdiff matrices in order to correct by a
later treatment the differential measurement along the EP test axis.

From (5), the in-orbit calibration of the instrument consists in estimating the matrix M−1

in order to correct the measurement acceleration, "meas, and so obtain the true acceleration,
"real. It is thus more efficient to evaluate directly the useful components of the inverse matrix
M−1, noted A, than to evaluate and inverse M. The matrix A can be expressed by

(
"app,c

"app,d

)
=

(
Ac Ad

Ad Ac

) [(
"meas,c

"meas,d

)
−

(
"noise,c

"noise,d

)
−

(
K0,c

K0,d

)]
. (6)

This equation can be considered as the fundamental equation of the calibration procedure.

3.2. Required performance for the instrument calibration

To establish the calibration objectives, a typical MICROSCOPE orbit has been computed
in detail [15] with 10−2 mean eccentricity, 98.4◦ inclination and 720 km altitude leading to
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Figure 3. Two concentric masses orbit around the earth. Subjected to the same gravitational field
of the earth an eventual signal of EP violation is measured through the necessary (or unnecessary
in the case of no violation) electrostatic forces to be added in such a way that the two masses have
the same orbit.

Table 1. Earth’s gravitational field and gravity gradient expressed in the measurement frame
for a typical MICROSCOPE orbit. These values have been computed with the support of the
Observatoire de la Côte d’Azur’s models. Y is normal to the orbital plane, and X and Z are in this
plane.

Earth’s gravity field X Y Z

dc (m s−2) 5.8 × 10−6 3.4 × 10−4 5.1 × 10−6

Orbital frequency (m s−2) 7.9 2.6 × 10−3 7.9

Gravity gradient XX XY XZ YY YZ ZZ

dc (/s2) 5.6 × 10−7 3.4 × 10−8 1.4 × 10−10 1.1 × 10−6 5.3 × 10−8 5.6 × 10−7

Orbital freqeuncy (/s2) 9.3 × 10−9 3.2 × 10−11 9.5 × 10−9 3.4 × 10−8 3.6 × 10−11 2.5 × 10−8

a near 8 m s−2 gravitational acceleration signal. Table 1 presents the absolute amplitude of
the gravitational and non-gravitational accelerations expressed along the inertial axis of the
instrument and at the orbital frequency FO (8 × 10−4 Hz). These data are hereafter used to
perform the harmonic analysis of the measured signal. Note that the self-gravity of the satellite
is neglected and that many other lines appear as observed hereafter in the simulations when
considering all spherical harmonies of the earth’s gravity potential. The EP test signal is along
the earth field, and thus projected onto the instrument inertial axes at the orbital frequency
(figure 3). Table 2 shows the specified performance of the DFACS [17]. From these tables and
from (2), the acceleration amplitudes, measured by a perfect differential accelerometer, are
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Table 2. Requirements for the performance of the drag-free system (DFACS) used to reduce the
amplitude of non-gravitational accelerations suffered by the satellite.

X Y Z

Angular velocity
dc (rd s−1) 10−5 1.07 × 10−3 10−5

Fluctuations (rd/s/
√

Hz) 10−6 10−6 10−6

Angular acceleration
dc (rd s−2) 2 × 10−6 2 × 10−6 2 × 10−6

Fluctuations (rd/s2/
√

Hz) 10−8 10−8 10−8

Linear acceleration
dc (m s−2)∗ 10−9 10−9 10−9

Fluctuations (m/s2/
√

Hz) 3 ×10−10 3 × 10−10 3 × 10−10

∗ When the DFACS is not disturbed by the accelerometer bias level.

Table 3. The signals measured by a perfect differential accelerometer are computed for common
and differential modes considering two values of the distance between the two test masses along
the X and Z axes.

Mean applied signal Applied signal difference

X YZ X Y Z

$x, y, z = 20 µm
dc (m s−2) 10−9 10−9 −1.1 × 10−11 −2.1 × 10−11 −1.16 × 10−11

Orbital frequency (m s−2) 10−12 10−12 1.8 × 10−13 6.9 × 10−13 5.0 × 10−13

Fluctuations (m/s2/
√

Hz) 3 × 10−10 3 × 10−10 4 × 10−13 3 × 10−13 5 × 10−13

$x, z = 0.1 µm
$y = 20 µm

dc (m s−2) 10−9 10−9 −4.0 × 10−11 −2.2 × 10−11 4.0 × 10−11

Orbital frequency (m s−2) 10−12 10−12 1.5 × 10−15 6.9 × 10−13 2 × 10−15

Fluctuations (m/s2/
√

Hz) 3 × 10−10 3 × 10−10 2 × 10−13 2 × 10−14 2 × 10−13

computed for two values of the distance between the two test masses at dc value, harmonics
at FO and fluctuations (table 3).

With 10−2 orbit eccentricity, the earth’s gravity tensor presents components with high
amplitude at orbital frequency, up to a few 10−8 m/s2/m. Multiplied by the 20 µm distance
between the two test masses, this leads to a differential signal of a few 10−13 m s−2 (table 3)
is reduced to less than 10−15 m s−2 by the estimation of the common misalignments and
couplings.

Table 4 presents the amplitude instrument parameters obtained from the manufacturing
and integration specifications. Absolute sensitivity of the instrument cannot be tested in
the laboratory because of the range of operation, and the evaluation accuracy is limited by
the mass to electrodes accuracy. Alignments and coupling values must be considered with
respect to part sizes of a few centimetres, leading then to micrometre machining accuracy
when considering the addition of geometry error sources and margins [16]. The amplitude of
the signal due to dMcom and Mdiff in the difference of the measured accelerations is provided
at the EP test frequency in table 5. With a realistic 20 µm distance between the two test
masses after the instrument switches on, the gravity gradient signal (major term of the applied
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Table 4. Expected values of the instrument defects deduced from machining and integration
tolerances.

Matrix Expected
elements values

I + dKc 1 ± 10−2

dOc (rd) dSc ±10−2 ±10−4

dKd ±10−2

dOd (rd) dSd ±10−3 ±10−4

Table 5. The instrument measurement along the EP test axis is computed taking into account the
matrices of sensitivity before calibration. From these values the minimum accuracy required for
the evaluation of the dMcom and Mdiff matrix is deduced.

$x, z = 0.1 µm
Matrix elements $x, y, z = 20 µm $y = 20 µm

dKc 1.86 × 10−15 0.93 × 10−17

(dOc + dSc) 11.8 × 10−15 6.83 × 10−15

dKd 10 × 10−15 10 × 10−15

(dOd + dSd) 2.0 × 10−15 2.0 × 10−15

Sum 25.7 × 10−15 18.8 × 10−15

Applied difference 1.86 × 10−13 0.95 × 10−15

Measured difference 2.12 × 10−13 0.20 × 10−13

acceleration) is much too important. Table 5 shows also that a centring with an accuracy of
0.1 µm is compatible with the EP test accuracy of 10−15. This centring can only be performed
through the ground data processing, i.e. subtracting the gravity gradient signal after evaluation
of the off-centring. From table 5, the 3.5 × 10−4 selected specification of accuracy for the
evaluation of the dMcom matrix (dKc, dOc) is deduced when a 20 µm distance (by construction)
is considered limiting the disturbance terms to 5 × 10−16 m s−2. The elements of the Mdiff

matrix (dKd, dOd) must be evaluated with a 1.5 × 10−4 accuracy to limit the perturbating terms
at the same level.

In the MICROSCOPE experiment, the estimation of the common scale factor dKc does
not appear necessary for the rejection of the disturbances, which is coherent with the detection
of a weak signal (the EP signal) without the absolute scale factor of the measure: the violation
signal can be detected but with the relative accuracy of 1% that corresponds to dKc and that is
sufficient.

The importance of the calibration of the common-mode matrix dOc comes from the high
level of the gravity tensor at the frequency of the test due to the 10−2 eccentricity. The required
calibration performances of this matrix depend thus on the distance amplitude between the
two test masses as indicated previously. In case the satellite is rotating about the normal to the
orbit, the major lines of the gravity tensor are modulated and separated from the frequency of
the EP signal which becomes equal to the sum (or difference) of the orbital frequency and the
satellite spin frequency. Then by performing the same analysis, it is easy to show that only
dKd and dOd have to be calibrated with a 3 × 10−4 accuracy.

3.3. In-orbit calibration procedure

On-ground differential misalignment, couplings and scale factor matching cannot be calibrated
even with the anti-seismic test bench developed in the laboratory because of the residual level
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Figure 4. Schema of the DFACS loop using one or both inertial sensor outputs. For the calibration
method, reference signals are introduced in the control laws to be followed by the measured values;
the sensor sensitivities are then deduced from the comparison of the outputs not directly affected
by the reference signal.

of perturbations (few 10−9 m/s2/
√

Hz) and the presence of normal gravity. Free-fall tests can
also be performed at the Drop Tower in Bremen (Germany) with fall durations of 4.7 s. But the
level of the present measured random signal (a few 10−7 m/s2/

√
Hz) is too important for high

calibration sensitivity [18]. In addition, common misalignment between accelerometers and
the star sensor can only be measured after integration in the satellite. An in-orbit calibration
procedure must be thus developed.

The first difficulty for in-orbit calibration comes from the lack of well-known signals. The
proposed solution for the MICROSCOPE mission consists in applying successive accelerations
thanks to the drag compensation system. By the introduction of a reference periodic signal
in the DFACS control loop of the orbit motion, the satellite and the instrument are shaken in
translation (common mode). By the introduction of the signal in the attitude control loop,
the instrument is shaken in rotation (differential mode). This operation is very interesting
for the calibration because the misalignments between the accelerometer and the thrusters are
rejected by the DFACS loop gains (see figure 4). Another solution consists in using the earth’s
gravity gradient as a well-known (through a spherical harmonics model) differential signal to
calibrate dMcom and the distance between the test masses. The advantage of this method is
the possibility that it can be exploited all the time; however, the full sensitivity matrix cannot
be calibrated. With the DFACS, three common-mode and three differential-mode excitations
are generated by applying three periodic translations and three rotations. At frequencies of
a few 10−3 Hz, from equation (6) five relations can then be deduced for the determination
of the X differential line (corresponding to the EP test line) of the matrix A, by considering
that the acceleration "real,diff is quite null along X. These relations provide in particular the
three differential sensitivities (Adiff). A last equation is obtained through another line of the
measurement vector to deduce the three common misalignments (dOc).

This method prohibits the determination of the instrument absolute scale factor dKc. The
relative accuracies of the estimates of the other matrices are directly defined by dKc. The
a priori knowledge of the scale factors is 10−2 and thus sufficient to evaluate the misalignments
from 10−2 rd or 10−3 rd to 3.5 10−4 rd or 1.5 10−4 rd required accuracy. As already discussed
above, the impossibility of estimating the absolute scale factor is not a limitation for the
success of the mission.

The DFACS sensor loop can operate from a linear combination of the outputs of both
inertial sensors or from only one of the two sensors. Both configurations are quite similar
in their implementation on the propulsion system and in the inertial sensor data process but
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Table 6. Comparison between the inverse of the input values of the instrument defects and their
estimation for the X-axis. The required accuracy of 3 ×10−4 is obtained.

Initial Estimated Absolute
value value difference

dAd (1, 1) −22.3 × 10−4 −21.9 × 10−4 −0.43 × 10−4

dAd (1, 2) −1.54 × 10−4 −1.19 × 10−4 −0.34 × 10−4

dAd (1, 3) 2.33 × 10−4 2.87 × 10−4 0.53 × 10−4

the drag-free point can be settled from the centre of one mass to the other one. The attitude
motion of the satellite does not offset the sensors in the same way.

Let us define now the necessary amplitudes and frequencies of the necessary calibration
signals. For the determination of the Ad coefficients, the amplitude and the frequency of
the common excitation signals are selected considering the operating range and bandwidth
of the sensors. A frequency of 5 × 10−3 Hz is a good compromise between the EP signal
frequency (one or a few orbital frequencies) and the systematical error frequency due to the
earth’s gravity gradient major lines in such a way that the total systematical error equals the
absolute scale factor error, i.e. 10−4 (table 4). The duration of the integration necessary
to reach the required calibration accuracy is estimated by considering the measurement
resolution and the satellite drag-free performance, leading to a total of random signal of 3.8 ×
10−12 m/s2/

√
Hz at 5 × 10−3 Hz. With an excitation amplitude of 10−8m s−2 and an integration

period of the measured signal extended to 600 s, the Ad matrix coefficient can be evaluated
with the required 1.5 × 10−4 accuracy. Simulations of the satellite and instrument operations
have been performed with Matlab software to configure these values. Spectral analysis at the
calibration frequency has been implemented for the calibration signal extraction.

The common coefficient Ac are much more difficult to evaluate because of the weak
amplitude of the generated differential signal or the natural gravity gradient signal with the
maximum 20 µm off-centring (a few 10−11 m s−2). The pointing of the satellite is controlled
from the star sensor output and velocity vector from the hybridization estimator exploiting
the star sensor and inertial sensor outputs. The ac matrix coefficients concern in particular the
attitude of the sensor axes to be determined with respect to the star sensor frame. Thus, the
calibration frequency must be sufficiently low where the satellite attitude follows the star
sensor outputs. With a frequency of 4 × 10−3 Hz and a maximum angular motion of ±10◦ the
expected accuracy can be achieved after an integration period of 50 000 s, i.e. ten orbits.

3.4. Calibration tests with a dedicated simulator

A specific simulator of the DFACS loop with six degrees of freedom has been developed with
the software MatLab/Simulink to test the proposed calibration method for different types of
orbit and environmental conditions. The simulator includes the sensor matrices of sensitivity
and their detailed resolution versus frequency, the overall transfer function of the DFACS, the
thruster misalignments and gains. The accelerations suffered by the satellite at the input of
the drag-free loop have been computed independently along the orbit [19].

The sensitive matrices of each inertial sensor are randomly drawn in accordance with
table 4. Figure 5 presents the Fourier transform (modulus) of the differential-mode
measurement performed along the EP test axis (X) with a time window of 4096 s and when
the 10−8 m s−2 common-mode excitation along X is produced. From this measurement the
first element of the matrix Ad can be estimated.

All cases of excitations have been simulated and table 6 provides the obtained calibration
accuracy for matrix Ad with an integration time of 4096 s, a 10−2 eccentricity of the inertial
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Figure 5. Fourier transform of the differential measurement of the ultra-sensitive X-axis computed
by the simulator. These data have been obtained after 4096 s of integration with a sampling
frequency of 8 Hz. At low frequency, we observe the earth’s gravity gradient components and at
5 × 10−3 Hz the peak due to the linear excitation introduced by the difference of the inertial sensor
sensitivity. At upper frequencies the residual non-gravitational accelerations out of the DFACS
bandwidth are observed.

orbit and 20 µm distance between the two test masses being considered. The results confirm
the possibility of calibrating the instrument in orbit with the required precision of 1.5 × 10−4.
The same type of results is obtained with dAc coefficients.

4. Conclusion

The MICROSCOPE space mission aims to carry out the EP test with an accuracy better than
10−15. In spite of the previous space missions exploiting electrostatic accelerometers developed
from the same concept by the laboratory, this mission is an actual technological challenge
with very high sensitivity instrumentation, including a specific cylindrical configuration,
accommodated on board a drag-free satellite.

The MICROSCOPE drag-free system and the differential measurement between two
accelerometers allow us to reach very weak levels of acceleration, compatible with the mission
performances. Nevertheless, the instrument outputs need to be finely calibrated in such a way
as to interpret the observed signal and to confirm the experiment results. Taking into account
the environment of the instrument, the procedures for calibrating both inertial sensors have
been proposed and an accuracy of better than 1.5 × 10−4 has been demonstrated by simulation.
The interest of the approach is to take advantage of the existing drag-free propulsion system
leading to a sufficient performance in a reasonable data observation time.

The developed simulator prepares also the analysis of the data that will be collected
after the satellite launch foreseen in 2006. The proposed approach is also convenient for
other space missions based on comparison of inertial sensor outputs, e.g. LISA, the space
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gravitational wave detector of ESA or STEP, a more ambitious EP test experiment in space.
For earth observation missions such as the US GRACE geodesic satellites or the ESA GOCE
gradiometric project, weak acceleration and attitude motions of the satellite have also to be
finely controlled.
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