LISAPF Flight Through the Saddle Point

Tim Sumner 03 November 2014

Introduction

- Attempt to look at possible LISAPF constraints on Newtonian gravity in the solar system
- Very crude limits of validity of Kepler's Third Law have been determined in the acceleration range between 7.8 ms⁻² and 1.3 × 10⁻⁶ms⁻² assuming simple 2-body dynamics.
- More refined limits have been determined from results of numerical integrations of orbits of solar system bodies by Pitjeva in 2005
- Using a model-independent approach the potential for LISAPF to make sensitive gradiometer measurements to extend the range of validity and precision has been assessed.
- The acceleration range can be extended down to 1×10^{-7} ms⁻².
- The precision of validation at the low acceleration range $(1 \times 10^{-7} \text{ms}^2 \text{ to } 5 \times 10^{-5} \text{ms}^2)$ can potentially be marginally improved.
- The extended range corresponds effectively to three times the current size of the solar system.

Kepler's Third Law

Newtonian Gravity between two bodies, M_1 and M_2

$$\frac{a^3}{P^2} = \frac{G(M_1 + M_2)}{4\pi^2}$$

a - is semi-major axis

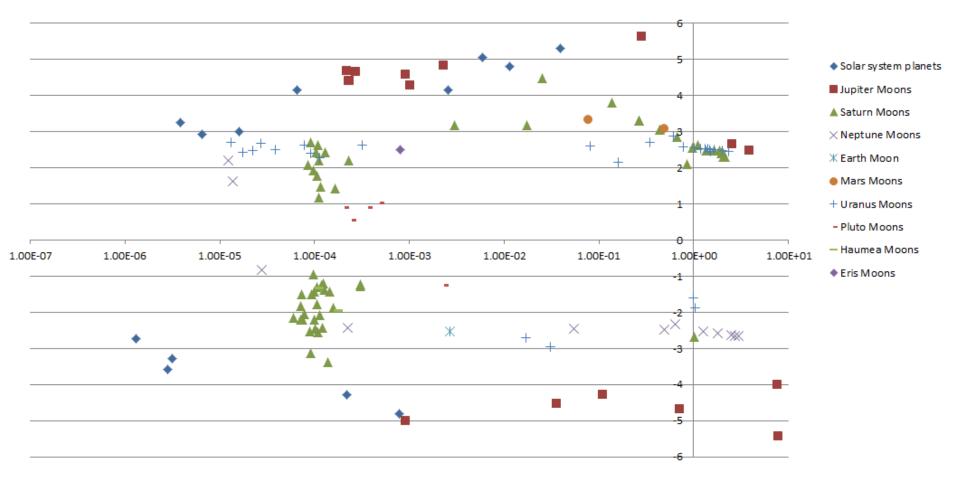
P – is orbital period

Add non-specific term to force

$$F = \frac{GM_1M_2}{r^2} + \delta F$$

$$\frac{a^3}{P^2} = \frac{G(M_1 + M_2)}{4\pi^2} + \frac{\delta F r^2}{M_2}$$

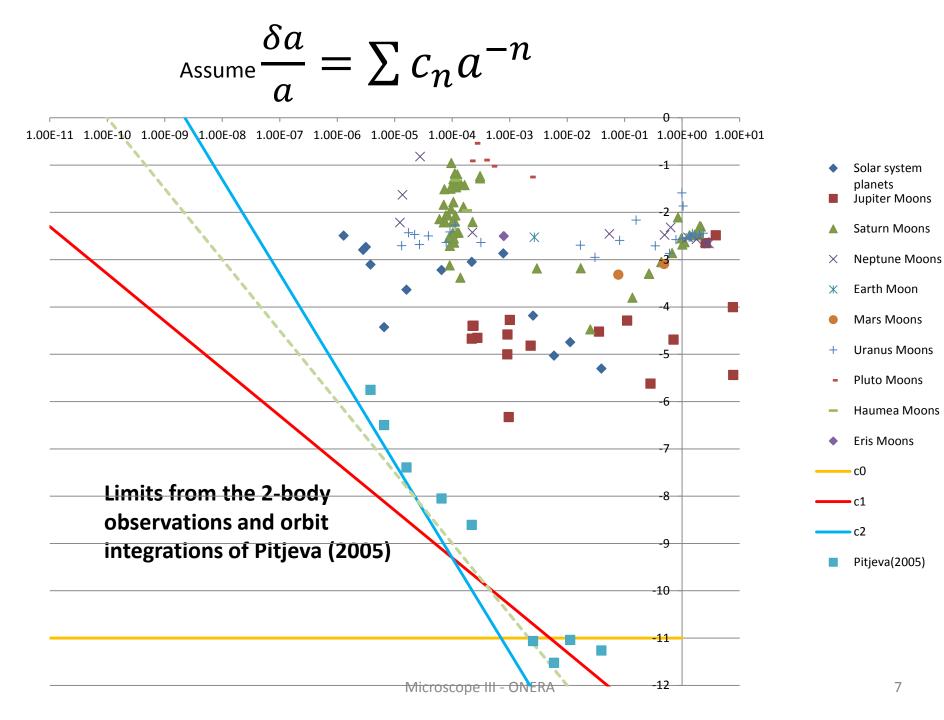
assumes $M_2 \ll M_1$


Microscope III - ONERA

Then

'Residual' =
$$1 - \left(\frac{a^3}{P^2} / \frac{G(M_1 + M_2)}{4\pi^2}\right) = \frac{\delta F}{F}$$

- Plotted residual for all solar system planets and dwarf planets in orbit around the Sun
- Plotted residuals for all satellites around other bodies
- Used log plot to expand range
- Kept sign to look for statistical quality


Residuals plot

Y=sign(res)*log10(res) X=local acceleration ms⁻²

Discussion of Residuals

- Solar system is multi-body object itself in orbit within Galaxy.
- Numerical orbit integration provides best way of allowing for all interactions.
- Pitjeva (2005) 317,000 position observables (1913-2003) to get
 - $1AU = 149597870.6960 \pm 0.0001$ km (7 in 10¹³)
 - 9 planets + Sun + Moon residuals to semi-major axes quoted
 - PPN formulism includes GR

Motivation

• LISA Pathfinder offers the following measurement capability (ESA-SCI(2007)1):

Differential Force Measurement Sensitivity:

≈ $1.3x10^{-14}N / \sqrt{Hz}$ around 1mHz

Drag-Free Platform Stability:

Platform Free-Fall Quality of ≈ 10⁻¹³ms⁻²/ √Hz around 1mHz ≈ 10⁻⁹ms⁻² at DC

Gravity Gradiometer Sensitivity: ≈ 1.5x10⁻¹⁴s⁻²/ √Hz around 1mHz

- LISAPF measures Δa at a particular location in space, s.
- The 'additional' signal due to δF is

$$\Delta a = \frac{\partial (\delta a)}{\partial a} \left(\frac{\partial a}{\partial r} \right)_{s} \Delta r$$

where Δr is separation between proof-masses

$$\Delta a = \frac{\partial (\delta a)}{\partial a} \left(\frac{\partial a}{\partial r} \right)_{s} \Delta r$$

where Δr is separation between proof-masses

and $\left(\frac{\partial a}{\partial r}\right)_{s} = \frac{2a_{E}}{r_{E}}$ where a_{E} is gravitational acceleration on the spacecraft and r_{E} is distance between spacecraft and Earth

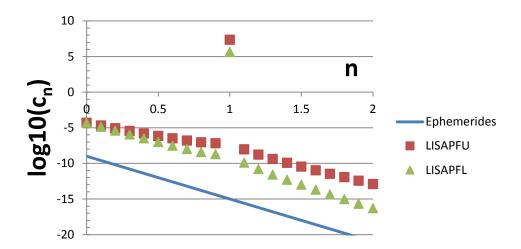
$$\Delta a = \frac{\partial (\delta a)}{\partial a} \left(\frac{2a_E}{r_E} \right) \Delta r$$

Recalling the assumption $\frac{\delta a}{a} = \sum c_n a^{-n}$ gives $\Delta a = \sum (n-1)c_n a^{-n} \left(\frac{2a_E}{r_E}\right) \Delta r$

Limits on c_n from assuming limiting sensitivity to Δa

Some numbers used

$$\begin{pmatrix} \frac{2a_E}{r_E} \end{pmatrix} = 4.59 \times 10^{-11} \text{ms}^{-2}/\text{m} \quad \Delta r = 0.4\text{m}$$

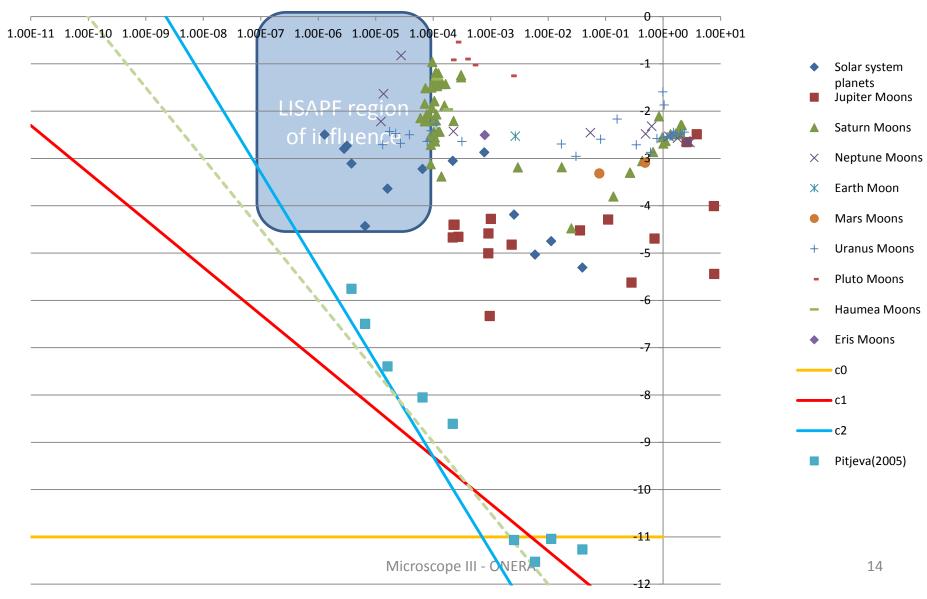

$$\Delta a_{min} = \frac{3 \times 10^{-14}}{\sqrt{1000}} \text{ms}^{-2} \text{ for 1000s integration}$$
Then $c_{0min} = \frac{\Delta a_{min}}{(4.59 \times 10^{-11} \times 0.4)} = 5 \times 10^{-5}$

$$c_{1min} = \infty$$

$$c_{2min} = \frac{\Delta a_{min} a^2}{(4.59 \times 10^{-11} \times 0.4)}$$

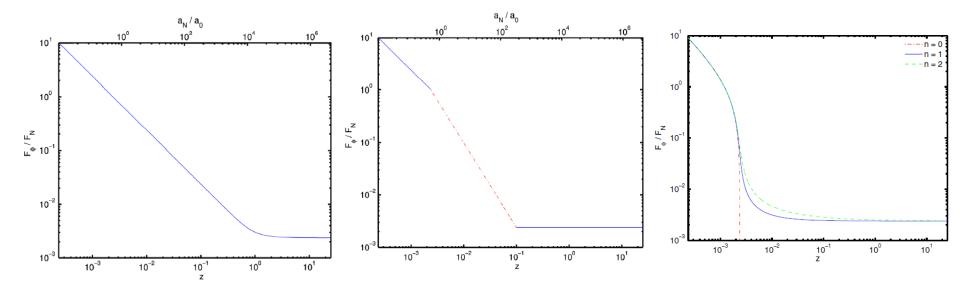
Make it more general by allowing n to be non-integer

$$c_{n_{min}} = \frac{\Delta a_{min} a^n}{(n-1)(4.59 \times 10^{-11} \times 0.4)}$$

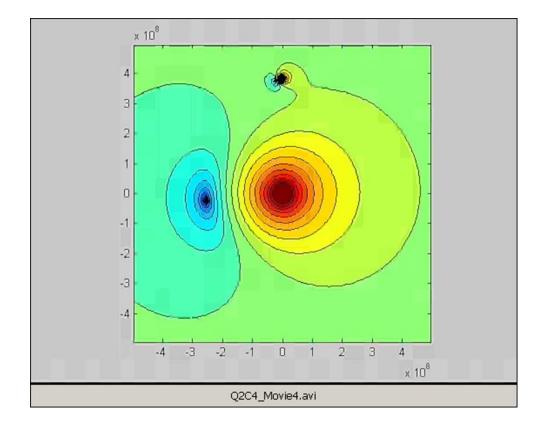


Note ephemerides line should have curvature and be lower at n=0

LISAPFU assumes $a = 5 \times 10^{-5}$ LISAPFL assumes $a = 1 \times 10^{-7}$

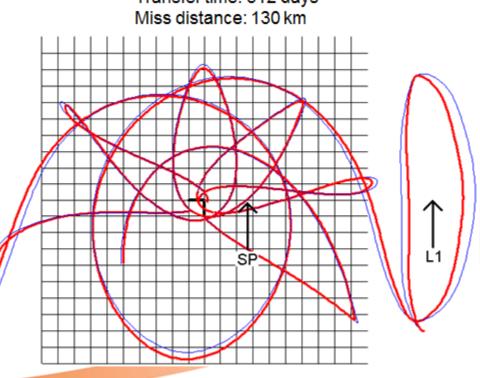

Need proper integration!

Potential LISAPF Extension


Alternative Theories of Gravity

- Alternative Theories of Gravity:
- See Magueijo & Mozaffari, PRD, 85, 043527 (2012)
 - Newtonian/Mond transition function (free function)
 - Type III can always be contrived to avoid signal

• The "Earth-Moon SP" is perturbed by the Sun (in fact we should call it the "Sun-Moon SP")


London

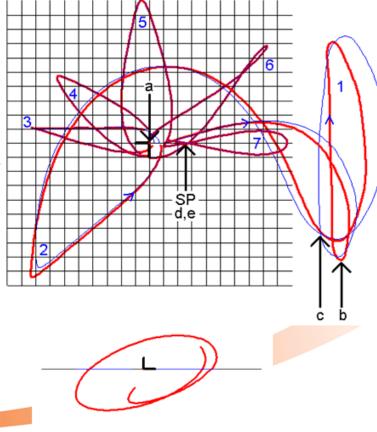
LISA Pathfinder Trajectories

- Example of "fast" transfer:
 - Solution transiting Sun-Earth SP within 100km
 - Starting from a typical Rockot or Vega case

Vega typical start. Transfer time: 512 days Miss distance: 130 km

- Adding manoeuvre during the Lissajous orbit
- Results:
 - Miss distance around 100 km
 - Transfer time about 1 year

17/33


LISA Pathfinder Trajectories

• Example of double pass:

- Solution achieving two SP transits by 582 days
 - 2.2. Starting from the SP 2.2.5. First results : example
 - a: Launch, 24/2/2013. inclination = 57.6° perigee altitude: 322 km
 - b: Libration orbit, 73 days after launch.
 - c: Exiting libration orbit, 258 days after launch. The spacecraft has spent 185 days around L1.
 - d: Reaching the SP for the first time, 543 days after launch (285 days after escaping from L1).
 - e: Reaching the SP for the second time, 582 days after launch (39 days after the first passage).

 Major/minor axes of the libration orbit: out of ecliptic: 417,000 km in plane: 775,000 km

space you need

Conclusions

- Limits from results of numerical integrations of orbits of solar system bodies by Pitjeva in 2005 have been recovered
- Using a model-independent approach the potential for LISAPF to make sensitive gradiometer measurements to extend the range of validity and precision has been assessed.
- The acceleration range can be extended down to 1×10^{-7} ms⁻².
- The precision of the validation at the low acceleration range $(1 \times 10^{-7} \text{ms}^2 \text{ to } 5 \times 10^{-5} \text{ms}^2)$ can potentially be marginally improved.
- The extended range corresponds effectively to three times the current size of the solar system.
- A positive departure from Newtonian would have implications for dark matter.
- On-board propulsion allows for two passes over a few year period.
- Cost to ESA is estimated at ~10MEuro level