Principle

Proposed method

Error assessment Conclusion
T ONNRR N R R e <o "
il | N/} 2
I

;’V\J' Hwyv\/ [

Measur

ing the Lense-Thirring effect with
MICROSCOPE

Quentin Baghi !, Gilles Métris 2, Joél Bergé !

LONERA - The French Aerospace Lab
20CA - Observatoire de la c6te d’Azur

1114 MICROSCOPE Colloquium - November 4, 2014

ONERA

OSPAC!

ddlr «Fr «

it
v
ja
it
v

I
1/16



Overview

@ Principle
© Proposed method

© Error assessment

@ Conclusion

ONERA



Principle

The Lense-Thirring effect

General Relativity predicts that the proper rotation of a central
mass influences the dynamics of an orbiting body.

Source : Stanford University
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Principle

The Lense-Thirring effect

Previous space-based experiments : Gravity Probe B and LAGEQOS
satellites

Guide Star
IM Pegasi
(HR8703)
2 Frame-dragging Precession
39 milliarcseconds/year
(0.000011 degrees/year)

[
Geodetic Precession
6,606 milliarcseconds/year
(0.0018 degrees/year)

GPB LAGEOS

image credits : NASA
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Principle

The Lense-Thirring effect

LAGEOS measurement uses the motion of two point masses
around the Earth.

“Orbit of

,
Polar orbit \ , / LAGEOS 2

of GRACE \
satellites

Equatorial e y
plane of Ear;lh/

Nodal line
of LAGEOS

Nodal line
of LAGEOS 2

Combination of the nodal
lines of LAGEOS and LAGEOS 2

Ciufolini, 2004
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Principle

Principle

@ The argument of the node is
shifting during the orbital
motion

dQ 4GM  wrR%
dt 5 c? 23(1—e?)3/2

@ For the MICROSCOPE orbit
the node shift is about
2.4 x 10~ rad/s

= 1 Hrad/year Source : Duriez, 2005
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Proposed method

Possible ways of measurement

@ direct measurement of the precession of the satellite orbital
plane using orbit restitution: annual change of 6.5 m in the
node position @ MICROSCOPE altitude.

@ rotation measurements of the proof masses. Angular velocity
precision specification : at best 107° rad s = does not
seem to be promising.

@ use of the two accelerometers as a gradiometer to measure
the Lense-Thirring contribution to the gravitational gradient.
The LT potential contributes to the gradient at an order of
magnitude of 10710 of the Newtonian term. Contribution in
the measured acceleration : 1071% ms™ at most, not likely to
be achievable.

The orbit restitution seems to be the best tool to use

ONERA

6



Error assessment

Measurement limitations

The main errors that can affect the measurement are :

e Orbit restitution (positioning)
o Model errors :

e Terrestrial potential multipoles model
o Drag free residuals
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Error assessment

Orbit restitution

Orbit positioning challenges

@ Satellite motion undergoes several
phases (the node shift during
inertial session corresponds to 16
cm). So integration throughout the
mission lifetime is not directly
possible.

@ Performance of GPS receiver to be
confirmed

© Additional data analysis for orbit
restitution will be necessary
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Error assessment

Model errors

Terrestrial potential multipoles

The even zonal coefficients of the Earth potential constitute the
larger perturbation term in the node variation rate

AQ n (R\*®_,
(52), = Zawi (%) Anostios
S2p p>1

(1)

2p Node shift

2 3x 10715 rad st
4 35x10 1 radst?
6 2.4x1071°rad s?t

-

Zonal coefficients contributions

¥
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Error assessment

Model errors

Drag free residuals

The non gravitational forces are measured and compensated by the
drag free control loop = no need to model them. The remaining
contributor is the residual W,es that is normal to the orbital plane :

dQ2 1 rsin(w + v)
e = - =7 Wres 2
( dt >NG navl — e2 a sm(/) ( )

Only the variations at orbital frequency have an impact.
The Science Mission Analysis (SMA) states that

<

Wies =1 x 1073ms2 @ £,

Equivalent shift : 7 x 107 rad.s1 = negligible
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Error assessment

Model errors

Another aspect of gravitational residuals : the gravitational
gradient between the satellite centre of mass (COM) and the

drag-free point.

B o Mol TIGG
G2 : drag free point ; ' | £ StelliteCOM
G : satellite COM ; §

However the main component of the
gradient peaks at 2fgp = should not
be a significant limitation
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Summary

Error assessment

Error source Estimated contribution
Orbit restitution 10 % 7
Earth Potential model 40 %
Drag free residuals <1%

Error assessment summary
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Conclusion

Conclusion

We propose to carry out an analysis to observe the
Lense-Thirring effect using the MICROSCOPE mission that is
likely to be achievable with an error less than 100%

@ Takes advantage of the drag compensation system

@ This can be an independent and self-consistent measurement
and can be improved by combining additional observables, for
instance the LAGEQOS satellites

@ This is a way of validating DF performances (c.f. my PhD
thesis)

@ Further analysis must be performed to assess the expected
performance
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Conclusion
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Conclusion

Thank you
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