16150

 J_{Ω}

Quentin Baghi ¹, Gilles Métris ², Joël Bergé ¹

1ONERA - The French Aerospace Lab ²OCA - Observatoire de la côte d'Azur

III^d MICROSCOPE Colloquium - November 4, 2014

retour sur innovation, and つへへ

3 / 16

ONER

The Lense-Thirring effect

General Relativity predicts that the proper rotation of a central mass influences the dynamics of an orbiting body.

Source : Stanford University

4 / 16

ONERA THE FRENCH AFROM

The Lense-Thirring effect

Previous space-based experiments : Gravity Probe B and LAGEOS satellites

GPB LAGEOS

image credits : NASA

5 / 16

ONERA THE FRENCH AFROM

The Lense-Thirring effect

LAGEOS measurement uses the motion of two point masses around the Earth.

Ciufolini, 2004

Principle

• The argument of the node is shifting during the orbital motion

$$
\frac{d\Omega}{dt} = \frac{4}{5} \frac{GM}{c^2} \frac{\omega_T R_T^2}{a^3 (1 - e^2)^{3/2}}
$$

• For the MICROSCOPE orbit the node shift is about 2.4×10^{-14} rad/s $= 1 \mu$ rad/year Source : Duriez, 2005

Possible ways of measurement

- **o** direct measurement of the precession of the satellite orbital plane using orbit restitution: annual change of 6.5 m in the node position @ MICROSCOPE altitude.
- rotation measurements of the proof masses. Angular velocity precision specification : at best 10^{-9} rad s $^{-1}$ \implies does not seem to be promising.
- use of the two accelerometers as a gradiometer to measure the Lense-Thirring contribution to the gravitational gradient. The LT potential contributes to the gradient at an order of magnitude of 10⁻¹⁰ of the Newtonian term. Contribution in the measured acceleration : 10^{-16} ms⁻² at most, not likely to be achievable.

The orbit restitution seems to be the best tool to use

Measurement limitations

The main errors that can affect the measurement are :

- Orbit restitution (positioning)
- Model errors :
	- Terrestrial potential multipoles model
	- Drag free residuals

Orbit restitution

Orbit positioning challenges

- **1** Satellite motion undergoes several phases (the node shift during inertial session corresponds to 16 cm). So integration throughout the mission lifetime is not directly possible.
- 2 Performance of GPS receiver to be confirmed
- ³ Additional data analysis for orbit restitution will be necessary

Model errors

Terrestrial potential multipoles

The even zonal coefficients of the Earth potential constitute the larger perturbation term in the node variation rate

$$
\left(\frac{\Delta\Omega}{\Delta t}\right)_{J_{2\rho}} = -\sum_{\rho\geq 1} \frac{n}{\sin i} \left(\frac{R_e}{a}\right)^{2\rho} F'_{2\rho,0,\rho}(i) \delta J_{2\rho} \tag{1}
$$

Zonal coefficients contributions

Model errors

Drag free residuals

The non gravitational forces are measured and compensated by the drag free control loop \implies no need to model them. The remaining contributor is the residual W_{res} that is normal to the orbital plane :

$$
\left(\frac{d\Omega}{dt}\right)_{NG} = \frac{1}{n a \sqrt{1 - e^2}} \frac{r}{a} \frac{\sin(\omega + v)}{\sin(i)} W_{res}
$$
(2)

Only the variations at orbital frequency have an impact. The Science Mission Analysis (SMA) states that

$$
W_{\text{res}} = 1 \times 10^{-13} \text{ms}^{-2} \text{ Q } f_{\text{orb}}
$$

Equivalent shift : 7×10^{-18} rad.s⁻¹ \implies negligible

Model errors

Another aspect of gravitational residuals : the gravitational gradient between the satellite centre of mass (COM) and the drag-free point.

$$
\overrightarrow{\rho}=-\overrightarrow{F_{nat}}-M_{sat}[\,T\,]\overrightarrow{G_{12}G}
$$

 G_{12} : drag free point G : satellite COM However the main component of the gradient peaks at $2f_{FP} \implies$ should not be a significant limitation

Error assessment summary

Conclusion

- We propose to carry out an analysis to observe the Lense-Thirring effect using the MICROSCOPE mission that is likely to be achievable with an error less than 100%
- Takes advantage of the drag compensation system
- This can be an independent and self-consistent measurement and can be improved by combining additional observables, for instance the LAGEOS satellites
- This is a way of validating DF performances (c.f. my PhD thesis)
- Further analysis must be performed to assess the expected performance

References

J. Lense and H. Thirring (1918)

On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation Journal Name 19(7011), 156.

ā.

Ciufolini, Ignazio and Pavlis, Erricos C (204)

A confirmation of the general relativistic prediction of the Lense–Thirring effect

Nature 431(7011), 958–960.

Mashhoon, Bahram and Paik, Ho Jung and Will, Clifford M. (1989) Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer. Theoretical principles Phys. Rev. D 39(10), 2825–2838.

Kang, Tapley, Bettadpur, Ries, Nagel, and Pastor.

Precise orbit determination for the grace mission using only gps data. Journal of Geodesy, 80(6):322–331, 2006.

Thank you

