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The Lense-Thirring effect

General Relativity predicts that the proper rotation of a central
mass influences the dynamics of an orbiting body.

Source : Stanford University
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The Lense-Thirring effect

Previous space-based experiments : Gravity Probe B and LAGEOS
satellites

GPB LAGEOS

image credits : NASA
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The Lense-Thirring effect

LAGEOS measurement uses the motion of two point masses
around the Earth.

Ciufolini, 2004
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Principle

The argument of the node is
shifting during the orbital
motion
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For the MICROSCOPE orbit
the node shift is about
2.4× 10−14 rad/s
= 1 µrad/year Source : Duriez, 2005
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Possible ways of measurement

direct measurement of the precession of the satellite orbital
plane using orbit restitution: annual change of 6.5 m in the
node position @ MICROSCOPE altitude.

rotation measurements of the proof masses. Angular velocity
precision specification : at best 10−9 rad s-1 =⇒ does not
seem to be promising.

use of the two accelerometers as a gradiometer to measure
the Lense-Thirring contribution to the gravitational gradient.
The LT potential contributes to the gradient at an order of
magnitude of 10−10 of the Newtonian term. Contribution in
the measured acceleration : 10−16 ms-2 at most, not likely to
be achievable.

The orbit restitution seems to be the best tool to use
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Measurement limitations

The main errors that can affect the measurement are :

Orbit restitution (positioning)

Model errors :

Terrestrial potential multipoles model
Drag free residuals
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Orbit restitution

Orbit positioning challenges

1 Satellite motion undergoes several
phases (the node shift during
inertial session corresponds to 16
cm). So integration throughout the
mission lifetime is not directly
possible.

2 Performance of GPS receiver to be
confirmed

3 Additional data analysis for orbit
restitution will be necessary
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Model errors

Terrestrial potential multipoles

The even zonal coefficients of the Earth potential constitute the
larger perturbation term in the node variation rate(
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2p Node shift

2 3× 10−15 rad s-1

4 3.5× 10−15 rad s-1

6 2.4× 10−15 rad s-1

Zonal coefficients contributions
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Model errors

Drag free residuals

The non gravitational forces are measured and compensated by the
drag free control loop =⇒ no need to model them. The remaining
contributor is the residual Wres that is normal to the orbital plane :(
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Only the variations at orbital frequency have an impact.
The Science Mission Analysis (SMA) states that

Wres = 1× 10−13ms-2 @ forb

Equivalent shift : 7× 10−18 rad.s-1 =⇒ negligible
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Model errors

Another aspect of gravitational residuals : the gravitational
gradient between the satellite centre of mass (COM) and the
drag-free point.

−→p = −
−−→
Fnat −Msat [T ]

−−−→
G12G

G12 : drag free point
G : satellite COM
However the main component of the
gradient peaks at 2fEP =⇒ should not
be a significant limitation

Drag-Free point 

Satellite COM 
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Summary

Error source Estimated contribution

Orbit restitution 10 % ?
Earth Potential model 40 %
Drag free residuals < 1 %

Error assessment summary
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Conclusion

We propose to carry out an analysis to observe the
Lense-Thirring effect using the MICROSCOPE mission that is
likely to be achievable with an error less than 100%

Takes advantage of the drag compensation system

This can be an independent and self-consistent measurement
and can be improved by combining additional observables, for
instance the LAGEOS satellites

This is a way of validating DF performances (c.f. my PhD
thesis)

Further analysis must be performed to assess the expected
performance
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Thank you
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