

Ja

#### Quentin Baghi <sup>1</sup>, Gilles Métris <sup>2</sup>, Joël Bergé <sup>1</sup>

<sup>1</sup>ONERA - The French Aerospace Lab <sup>2</sup>OCA - Observatoire de la côte d'Azur

III<sup>d</sup> MICROSCOPE Colloquium - November 4, 2014



retour sur innovati,0권, < 관 + < 불 ► < 불 ► > 원 < 으 <













## The Lense-Thirring effect

General Relativity predicts that the proper rotation of a central mass influences the dynamics of an orbiting body.



Source : Stanford University



# The Lense-Thirring effect

 $\label{eq:previous space-based experiments: Gravity \ \mbox{Probe B and LAGEOS satellites}$ 





LAGEOS

ONERA

GPB

image credits : NASA

## The Lense-Thirring effect

LAGEOS measurement uses the motion of two point masses around the Earth.



Ciufolini, 2004



# Principle

• The argument of the node is shifting during the orbital motion

$$\frac{d\Omega}{dt} = \frac{4}{5} \frac{GM}{c^2} \frac{\omega_T R_T^2}{a^3 (1 - e^2)^{3/2}}$$

• For the MICROSCOPE orbit the node shift is about  $2.4 \times 10^{-14}$  rad/s = 1  $\mu$ rad/year



Source : Duriez, 2005



## Possible ways of measurement

- direct measurement of the precession of the satellite orbital plane using orbit restitution: annual change of 6.5 m in the node position @ MICROSCOPE altitude.
- rotation measurements of the proof masses. Angular velocity precision specification : at best  $10^{-9}$  rad s<sup>-1</sup>  $\implies$  does not seem to be promising.
- use of the two accelerometers as a gradiometer to measure the Lense-Thirring contribution to the gravitational gradient. The LT potential contributes to the gradient at an order of magnitude of  $10^{-10}$  of the Newtonian term. Contribution in the measured acceleration :  $10^{-16}$  ms<sup>-2</sup> at most, not likely to be achievable.

The orbit restitution seems to be the best tool to use



## Measurement limitations

The main errors that can affect the measurement are :

- Orbit restitution (positioning)
- Model errors :
  - Terrestrial potential multipoles model
  - Drag free residuals



# Orbit restitution

#### Orbit positioning challenges

- Satellite motion undergoes several phases (the node shift during inertial session corresponds to 16 cm). So integration throughout the mission lifetime is not directly possible.
- Performance of GPS receiver to be confirmed
- Additional data analysis for orbit restitution will be necessary





## Model errors

#### Terrestrial potential multipoles

The even zonal coefficients of the Earth potential constitute the larger perturbation term in the node variation rate

$$\left(\frac{\Delta\Omega}{\Delta t}\right)_{J_{2p}} = -\sum_{p\geq 1} \frac{n}{\sin i} \left(\frac{R_e}{a}\right)^{2p} F'_{2p,0,p}(i) \delta J_{2p} \tag{1}$$



J<sub>2</sub>

| 2 <i>p</i> | Node shift                                          |
|------------|-----------------------------------------------------|
| 2          | $3 	imes 10^{-15}$ rad s <sup>-1</sup>              |
| 4          | $3.5\times10^{-15}~\text{rad}~\text{s}^{\text{-1}}$ |
| 6          | $2.4\times10^{-15}~\text{rad}~\text{s}^{\text{-1}}$ |

Zonal coefficients contributions



ONE

#### Model errors

#### Drag free residuals

The non gravitational forces are measured and compensated by the drag free control loop  $\implies$  no need to model them. The remaining contributor is the residual  $W_{res}$  that is normal to the orbital plane :

$$\left(\frac{d\Omega}{dt}\right)_{NG} = \frac{1}{na\sqrt{1-e^2}} \frac{r}{a} \frac{\sin(\omega+v)}{\sin(i)} W_{res}$$
(2)

Only the variations at orbital frequency have an impact. The Science Mission Analysis (SMA) states that

$$W_{res} = 1 \times 10^{-13} \mathrm{ms}^{-2}$$
 @  $f_{orb}$ 

Equivalent shift :  $7 \times 10^{-18}$  rad.s<sup>-1</sup>  $\implies$  negligible

#### Model errors

Another aspect of gravitational residuals : the gravitational gradient between the satellite centre of mass (COM) and the drag-free point.

$$\overrightarrow{p} = -\overrightarrow{F_{nat}} - M_{sat}[T]\overrightarrow{G_{12}G}$$

 $G_{12}$ : drag free point G: satellite COM However the main component of the gradient peaks at  $2f_{EP} \implies$  should not be a significant limitation







| Error source          | Estimated contribution |
|-----------------------|------------------------|
| Orbit restitution     | 10 % ?                 |
| Earth Potential model | 40 %                   |
| Drag free residuals   | < 1 %                  |

Error assessment summary



# Conclusion

- We propose to carry out an analysis to observe the Lense-Thirring effect using the MICROSCOPE mission that is likely to be achievable with an error less than 100%
- Takes advantage of the drag compensation system
- This can be an independent and self-consistent measurement and can be improved by combining additional observables, for instance the LAGEOS satellites
- This is a way of validating DF performances (c.f. my PhD thesis)
- Further analysis must be performed to assess the expected performance



#### References



#### J. Lense and H. Thirring (1918)

On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation *Journal Name* 19(7011), 156.

Ciufolini, Ignazio and Pavlis, Erricos C (204)

A confirmation of the general relativistic prediction of the Lense–Thirring effect

Nature 431(7011), 958-960.



Mashhoon, Bahram and Paik, Ho Jung and Will, Clifford M. (1989) Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer. Theoretical principles *Phys. Rev. D* 39(10), 2825–2838.

Kang, Tapley, Bettadpur, Ries, Nagel, and Pastor. Precise orbit determination for the grace mission using only gps data. Journal of Geodesy, 80(6):322–331, 2006.



# Thank you

